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Abstract. The Precautionary Principle is a controversial policy instrument, often criticized
for stifling innovation and growth. In this paper, we introduce a model of risky technology
reflecting real-life situations where policymakers have called for and sometimes implemented
the Precautionary Principle. We define this Principle as an institutional cap on actions that
cannot be adjusted for a fixed period of time and ask whether it is valuable, and under which
circumstances, to impose such cap. If he starts using the technology, a decision-maker faces
the possibility of an irreversible catastrophe, an event that follows a non-homogeneous Poisson
process with a rate that depends on the stock of past actions. Passed a tipping point, the
rate increases. We describe optimal trajectories under different degrees of knowledge on the
tipping point. When the mere fact of having passed the tipping point is immediately known,
the optimal action plan is time-consistent, and the Precautionary Principle is irrelevant. When
having passed the tipping point remains unknown, a scenario of deep uncertainty, a time-
inconsistency problem arises. We characterize both the commitment solution and a Stock-
Markov Equilibrium such that the decision-maker uses at any point in time a feedback rule
that depends only on the existing stock of past actions. Imposing a Precautionary Principle
at the beginning of the period can improve commitment. We prove that such a restriction is
optimal when passing the tipping point is unlikely to happen early on, a scenario that would
lead decision-makers to increase action levels too quickly.
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1. INTRODUCTION

On the Precautionary Principle. The major environmental and health issues that pertain
to our modern risk society are often due to our own production or consumption activities.1

When dealing with such risks, policy decision-making is complicated by two features that
make the standard tools of cost-benefit analysis of little value or even irrelevant. The first
specificity is that consumption and production choices might entail a strong irreversibility
component. The most salient example is given by global warming. Pollutants have been
accumulating in the atmosphere from the beginning of the industrial era, leading to a
steady increase in temperature. All current or planned efforts against global warming

1We thank seminar participants to the Environmental Economics Seminar and to the Frontier in
Environmental Economics 2017 Workshop at Paris School of Economics, ETH Zurich Workshop on
Environmental Economics 2017, World Congress of Environmental and Resource Economics 2018, and
Montpellier, CREST-ENSAE-Polytechnique, Columbia University, the 3rd IO Workshop in Bergamo
2019, Toronto Rotman, Duke University, and UBC Vancouver for useful comments on earlier versions of
this paper. This work has benefited from discussions with Antoine Bommier, Bernard Salanié, Eric Seré
and especially Ivar Ekeland who has been instrumental in helping us to shape our view of this problem.
The usual disclaimer applies.

aColumbia University, louise.guillouet@columbia.edu
bParis School of Economics-EHESS, david.martimort@psemail.eu
1See Beck (1992).
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2 L. GUILLOUET AND D. MARTIMORT

consist in controlling the growth rate of temperature, with little hope of reducing it.
Another example is given by GMO crops whose production may profoundly modify the
surrounding biotope without any possibility of engineering back that biotope because of
irreversible mutations.2

The second feature of those problems is that the costs and benefits of any decisions
have to be assessed in a world of significant uncertainty. Although the consequences of
acting might be detrimental to the environment, the extent to which it is so and the
probability of harmful events, in other words the physical processes at play, remain to a
large extent unknown to decision-makers at the time of acting.

The policy guidelines that have been adopted to structure decision-making and regu-
lation in those contexts widely vary from one country to the other. To illustrate, while
GMOs are authorized for human consumption in the U.S. without labelling, it is com-
pulsory to label them in sixty four other countries throughout the world and they are
actually forbidden in most of the E.U.. Despite such variations in responses, a common
concern has been to improve knowledge of the risky phenomenons at stake and thus to
let scientific expertise play a significant role throughout the decision-making process.3

To further guide decision-making, a concept that has repeatedly been invoked is the so
called Precautionary Principle. The original idea is due to the philosopher Hans Jonas’
Vorsorgeprinzip, or Principle of Foresight - sometimes translated and referred to as the
Principle of Responsibility. This Principle suggests that we should acknowledge the long-
term irreversible consequences of present actions, and refrain from undertaking any such
action if there is no proof that it would not negatively affect future generations’ well-being.
The Precautionary Principle was acknowledged by the United Nations in 1992, during the
Earth Summit held in Rio, and expressed perhaps less restrictively as: “Where there are
threats of serious and irreversible damage, lack of full scientific certainty shall not be used
as a reason for postponing cost-effective measures to prevent environmental degradation.”
The same idea was then developed and adopted by several other governments. In France,
a very similar principle was written in the 2004 Charter on Environment,4 that is now part
of the French Constitution. Any risk regulation must comply with the legal framework
that the Principle contributes to build. In most cases, it takes the form of a law that states
a period during which some actions cannot be undertaken, or only at a very limited level.
For example, Switzerland voted in 2017 to ban GMO cultures for four years5. This is the
definition of the Precautionary Principle we will use throughout this paper.

There has always been a lively debate on whether the Precautionary Principle provides
a convenient guide for decision-making under deep uncertainty. Doubts exist on the fact
that its adoption might actually do more harm, by hindering innovation and wealth
creation, than good, by protecting human health or the environment. This debate, mainly

2Other examples include hydraulic fracturing to exploit shale gas (which implies irreversible pollution of
underground water reserves), authorizing the use of bisphenol A or glyphosate (which are both potential
sources of cancers), relying exclusively on nuclear energy (with potential severe environmental destruction
and health issues in case of an accident).

3We shall leave aside the concerns about the reliability of information and how it can be manipulated
or interpreted by groups of different backgrounds and experts. For some related discussion of those
considerations, we refer to Hood, Rothstein and Baldwin (2003, Chapter 2).

4Loi constitutionnelle n 2005-205 du 1 mars 2005 relative à la Charte de l’environnement.
5https://www.letemps.ch/suisse/cultures-ogm-ne-pousseront-sitot-suisse
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led by sociologists and political scientists, illustrates the contradictory views that pertains
to the Precautionary Principle.6 Giddens (2011) forcefully argues that preventing one risk
may sometimes trigger another. A ban on GMOs may increase the risk of starvation and
malnutrition in an uncertain future. Following the 2011 disaster in Fukushima, powerful
interest groups throughout Europe have been advocating for a ban on nuclear energy;
but on the other hand, it probably means relying on fossil energies even more at the cost
of accelerating global warming. Sunstein (2005) also points out that the Precautionary
Principle is sometimes understood as meaning not acting because more of the act is also
associated to a greater harm while true precaution might instead require taking serious
actions. Fighting global warming is an example in order. Finally, commentators have
also wondered about the exact definition of the Precautionary Principle which seems to
be modified on a case-by-case basis.7 One example of the fuzziness of the concept is
the difficulty to agree on what is meant by “full scientific certainty”, or its absence. To
illustrate, while the intensity of damages following a nuclear accident is unfortunately
perfectly known, it is possible that at some point in the future, advances in science might
make the probability of such catastrophe much smaller. But overturning precautionary
stances, if written into the Constitution, might be extremely difficult by then.8

That ethical considerations have entered the judicial arsenal and how such entry has
been perceived by practitioners raises two important comments. The first one is that
any ban on acting that the Principle recommends is only justified and thus matters if
the laissez-faire outcome would require, on the contrary, excessive actions. Any laissez-
faire theory justifying the Principle is thus conceptually flawed. In other words, the
Precautionary Principle can only find some rationale if it solves a conflict of interests
between the Constitutional level, which aims to maximize the well-being of present and
future generations, and decision-makers who are in charge of implementing actions at
every period. Our analysis will unveil such conflict and find its source in the dynamics
of actions in a world of deep uncertainty. Time-inconsistency may be a concern in such
context. The Precautionary Principle may then be viewed as a rough and incomplete
social contract9 that could help to solve a commitment problem.

Model and Results. A risky technology is available. Thanks to this technology, a
decision-maker can choose at any point in time an action giving a flow surplus. The
past stock of actions affects the arrival rate of an environmental disaster. Following such
disaster, viewed as a major disruptive event, opportunities for consumption/production
disappear and a flow damage is incurred from that date on. This event follows a non-
homogenous Poisson process. To capture the idea that past actions have an irreversible
impact, this rate depends on the stock of past actions. More precisely, when the stock
reaches a given tipping point, the rate discontinuously jumps upwards.10

6See Gardiner (2006) and O’Riordan (2013) for informed discussions.
7See Immordino (2003) on this.
8Austria banned nuclear power in 1978, arguably before greenhouse gases emissions became a strong

concern for citizens.
9Grossman and Hart (1986).
10Tipping points models are frequently used in ecology and in climatology (Lenton et al., 2008). To

illustrate, a recent report by the World Bank argues that “As global warming approaches and exceeds
2-degrees Celsius, there is a risk of triggering nonlinear tipping elements. Examples include the disin-
tegration of the West Antarctic ice sheet leading to more rapid sea-level rise.The melting of the Arctic
permafrost ice also induces the release of carbon dioxide, methane and other greenhouse gases which
would considerably accelerate global warming.” See http://whrc.org/project/arctic-permafrost.



4 L. GUILLOUET AND D. MARTIMORT

We consider different scenarios of information learning along the process.

The decision-maker knows where the tipping point lies. This is the simplest scenario.
Actions taken early on have now an opportunity cost since they contribute to approaching
the tipping point; an Irreversibility Effect. Because of discounting and because all actions
taken earlier on make the same contribution in coming close to the tipping point, optimal
actions are reduced over time during an initial precautionary phase. Distortions below the
myopic optimum are driven by the sole concern for irreversibility. Once the tipping point
has been passed, actions have no longer any impact on the arrival rate. The decision-
maker maximizes current benefits by jumping to a higher myopic action. The benefit
of low actions early on is to postpone the date at which the tipping point is reached.
Yet postponing that date also has a cost since actions can be raised up to the myopic
optimum once the tipping point is passed. The Precautionary Principle is here irrelevant
because, if the project is valuable, a constraint on actions earlier on would only make the
decision-maker postpone high actions into the future, resulting in a welfare loss.

The decision-maker only knows when the tipping point has been passed. Suppose now that
the tipping point is not a priori known. Only the distribution from which it is drawn is
known.11 Yet, the mere fact of having passed the tipping point is immediately learned.
This scenario arises when scientific knowledge is sufficiently advanced to figure out such
event. A by-product of such information structure is that as long as the tipping point
is known not to have been passed, the decision-maker also knows that the arrival rate
remains low. From a dynamic programming point of view, the state of the system is thus
entirely determined by the stock of past actions. The decision-maker looks for an optimal
action plan that prevails as long as ignorance on the value of the tipping point remains.
The decision-maker acts accordingly; taking into account the irreversibility of his earlier
actions and the uncertainty on where the tipping point lies. Once the tipping point is
passed, the decision-maker immediately switches to the myopic action forever just as in
the common knowledge scenario.12

The dynamic optimization problem has a recursive structure. The Principle of Dynamic
Programming applies and the solution is time-consistent. We fully characterize the opti-
mal trajectory by means of a Hamilton-Bellman-Jacobi equation for the value function
together with a feedback rule that determines how the current action (conditionally on
not having yet passed the tipping point) varies with state of the system, i.e., the existing
stock of past actions. The Irreversibility Effect is still at play. Uncertainty on the location
of the tipping point does not change the decision-maker’s incentives to reduce actions
before it is reached. The trajectory again features some discontinuous jump in actions
once it is known that the tipping point has been passed. The Precautionary Principle is
again irrelevant. Reducing actions earlier on would postpone the choice of higher actions
and the crossing of the tipping point into the future, again resulting in a welfare loss.

Deep uncertainty. Suppose now that the decision-maker remains ignorant on whether the

11The case of an agnostic Laplace distribution is a particular example of some relevance in practice.
Kriegler et al. (2009) offers a view of what experts might think of those distributions of tipping points.
Roe and Baker (2007) argues that whether past actions have already triggered a change of regimes might
remain unknown for a while.

12This scenario bears some resemblance with Loury (1979)’s analysis of how to exploit a resource with
unknown reserve. In that model as well, when the decision-maker has reached the limits of the resource
stock he immediately knows it and stops consuming from that date on.
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tipping point has already been passed. His action can no longer be conditioned on that
event. At any point in time t, the decision-maker, ignorant on where the tipping point lies,
evaluates his future payoffs with an implicit discount rate that encapsulates the expected
probability of survival from that date on. This discount rate evolves along the trajectory
as more potential values of the tipping points are crossed and no disaster arises. The
marginal rate of substitution between two subsequent dates in the future increases as
the decision-maker comes closer to those dates. Ideally, the decision-maker would like to
commit to keeping low actions in the future, because doing so would maintain the implicit
discount rate at a low level, thus preserving the relative value of future actions. Yet, the
decision-maker has incentives to re-optimize his action plan over time and choose higher
actions with respect to what was initially planned.

Accordingly, we look for an equilibrium concept that captures this continuous re-
optimization. To do so, we characterize a so-called Stock-Markov Equilibrium where the
decision-maker follows a feedback rule that specifies actions contingent on current stock
of past actions. This rule together with an associated pseudo-value function13 allows the
decision-maker to commit only for periods of arbitrarily small length. At any point in
time, the decision-maker thus chooses an action that is optimal given the current stock
of past actions and given that he expects his own selves to stick to the same feedback
rule later on, when the stock will have evolved according to his own current choice. The
pseudo-value function satisfies a functional equation that, although bearing some similar-
ities with a Hamilton-Bellman-Jacobi equation, is now non-local in nature. This non-local
nature captures the externality that his future selves exert on the decision-maker today.

Characterizing the solution to such a functional equation requires involved techniques.
We transform this functional equation into a pair of differential equations respectively for
the pseudo-value function and the externality component of the payoff. The properties
of this system are analyzed by means of the Cauchy-Lipschitz, Wintner and Hartman-
Grobman Theorems which provide existence and uniqueness of the time-consistent feed-
back rule and the pseudo-value function under various circumstances. We also analyze the
asymptotic behavior of these variables and derive tight bounds. In particular, the equi-
librium action (which by definition cannot be conditioned on whether the tipping has
been passed or not) and the value function both converge towards their myopic levels.
Moreover, the optimal action remains positive. Not acting is never optimal.

The Precautionary Principle. This time-inconsistency problem is akin to a conflict of
interests between the decision-maker’s selves acting at different points in time. It provides
a sound foundation for viewing the Precautionary Principle as a way of solving this
conflict. Committing to a fixed action before more information is learned (which in our
context means that it becomes more likely that the tipping point has been passed after
this commitment phase) indeed forces future selves to abide to the rule chosen earlier on.
Yet, the cost of such commitment is that the action no longer depends on the current
stock, i.e., on how much has been learned on the arrival rate of a disaster. The trade-off
is of course reminiscent of the rules versus discretion debate that arises (under different

13The qualifier pseudo captures the fact that this value function takes into account that future actions
will be taken by the decision-maker with the same equilibrium requirement of time-consistency.
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forms) in macroeconomics,14 political science15 and mechanism design.16 In our context,
the conflict of interests is between the different selves of a given decision-maker, acting
at different points in time in a context of time-inconsistency. We demonstrate that the
Precautionary Principle is optimal in contexts, close to those that arise when the tipping
point is perfectly known, where actions are decreasing at the beginning of the dynamics.
Under those circumstances, the decision-makers wants to start with high actions as the
tipping point seems very far away, and decrease actions later. Capping actions is a way
to control the decision-maker’s incentives to choose those high actions earlier on.

Organization. Section 2 reviews the literature. Section 3 presents the model. Section
4 presents two benchmarks: the case where the rate of disaster follows a homogeneous
Poisson process and the case where the tipping point is known. Section 5 introduces
some uncertainty on the tipping point. Section 6 deals with the case of deep uncertainty,
stressing the time-inconsistency problem that arises in this context and presenting the
commitment solution. Section 7 analyzes the existence and properties of any Stock-Markov
Equilibrium. Section 8 discusses the value of a Precautionary Principle. Section 9 briefly
recaps our results and discusses possible extensions. Proofs are relegated into Appendices.

2. LITERATURE REVIEW

Irreversibility, Uncertainty and Information. Arrow and Fisher (1974), Henry
(1974) and Freixas and Laffont (1984) were the first to show how a decision-maker should
take more preventive stances when the consequences of irreversible choices are uncertain,
the comparison being here with respect to the certainty case. Epstein (1980) has dis-
cussed general conditions under which this Irreversibility Effect prevails and proved that
the value of waiting17 increases when the decision-maker expects to benefit from a more
informative signal (in the sense of Blackwell) on the future realizations of uncertainty. In
those earlier models, information is exogenous while in many contexts in environmental
economics, earlier actions also determine information structures. Hereafter, the probabil-
ity of having passed the tipping point and possibly of learning it depends on the stock of
past actions. Models with such endogenous information structures are scarce. Freixas and
Laffont (1984) have studied a scenario in which more flexible actions increase the qual-
ity of future information, thus confirming the existence of the Irreversibility Effect while
Miller and Lad (1984) have challenged this view in a model of conservation in which irre-
versible actions might also be more informative.18 Salmi, Laiho and Murto (2019) study
the trade-off faced by a decision-maker who must choose between acting now, which
means taking a less informed decision but generating information useful in the sequel,
and acting later, when being more informed. Only the speed of learning is endogenous.

14See Kydland and Prescott (1977), Persson and Tabellini (1994) for a nice survey of applications,
Stockey (2002) for a more recent overview and Halac and Yared (2014) for recent developments.

15Epstein and O’Halloran (1999), Huber and Shipan (2002).
16See the literature on delegation in organisations as developed in Melumad and Shibano (1991),

Alonso and Matousheck (2008), Martimort and Semenov (2008) and Amador and Bagwell (2013).
17Later coined as the quasi-option value by Graham-Tomasi (1995). See also Jones and Ostroy (1984)

and Haneman (1989).
18Charlier (1997), Ramani, Richard and Trommetter (1992) and Ramani and Richard (1993) have also

provided such models of endogenous information structures specializing their analysis to the context of
GMOs and their development.
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Greater actions accelerate the convergence of beliefs towards the true state.19

The Laissez-Faire Interpretation of the Precautionary Principle. Gollier, Jullien
and Treich (2000) have built on the insights of the irreversibility literature to give some
economic content to the Precautionary Principle. These authors interpret the Precaution-
ary Principle as the incentives of a decision-maker to reduce his action below the level
that would otherwise be optimal without uncertainty, when this action is taken before any
information is learned. Much in the spirit of Kolstad (1996), Gollier, Jullien and Treich
(2000) build a two-period model of pollution accumulation with exogenous information
and draw conclusions on specific forms of utility functions that induce more precaution.
Asano (2010) has focused on the comparison of optimal environmental policies without
and with ambiguity, showing that the decision-maker’s lack of confidence forces him to
hasten the adoption of a policy, rather than postpone it. As we already pointed out,
the decision-maker’s behavior is optimal in these models and thus not constrained by a
Constitutional Precautionary Principle in any way.20 In other words, there would be no
reason for drafting such legal principle in this setting. The Laissez-Faire solution suffices.

Time-Inconsistency. Our approach for characterizing a trajectory in a continuous time
model with a time-inconsistency problem is similar to that developed in Karp and Lee
(2003), Karp (2005, 2007), Ekeland, Karp and Sumaila (2015) and Ekeland and Lazrak
(2006, 2008, 2010). These authors have analyzed various macroeconomic and growth
models with time-inconsistency problems in continuous time. Beyond other differences in
preferences, technology and dynamics of the evolution of the state variable, the source of
such time-inconsistency in those models is the time-dependency of the discount factor.
These models generalize the discrete-time models of Strotz (1955) and Laibson (1997)21

who first introduced the possibility of time-inconsistent discounting. By contrast, in this
paper time-inconsistency is generated by the fact that the expected probability of survival
from any date on is stock-dependent. This property implies that the intertemporal rate
of substitution between actions at two future dates decreases over time just as in most
models with a time-dependent discount factor. A major difference is that the decision-
maker in our context keeps some control over this time-dependency as it is affected by
his own actions, while it is taken as given in the extant literature.

On Tipping Points. We build on a strand of the environmental economics literature
which has focused on analyzing tipping points. Sims and Finoff (2016) have analyzed
how irreversibility in environmental damage and irreversibility in sunk cost investment
interact. Tsur and Zemel (1995) have investigated a problem of optimal resource extrac-
tion when extraction affects the probability that the resource becomes obsolete passed a
certain threshold. Under deep uncertainty (unknown threshold) the initial state affects
the optimal path and the decision-maker might end up exploiting the resource less than

19Taking a broader perspective, it is fair to recognize that the general framework proposed by the
irreversibility literature has been applied to the economics of climate change with mixed success. Some
authors have argued that this literature suggests that current abatements of greenhouse gaz emissions
should be greater when more information will be available in the future (Chichilnisky and Heal, 1993;
Beltratti, Chichilnisky and Heal, 1995; Kolstad, 1996; Gollier, Jullien and Treich, 2000; among others).
Others like Ulph and Ulph (2012) have pointed out that the sufficient conditions given by Epstein (1980)
for the Irreversibility Effect to hold may fail even in simple models of global warming.

20This feature is shared by other models in the field like Immordino (2000, 2005) and Gonzales (2008).
21See also Carrillo and Mariotti (2000), Harris and Laibson (2001) and O’Donoghue and Rabin (2003).
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under certainty, maybe up to the point of stopping exploitation; an extreme form of pre-
caution. In our model, the probability of the catastrophe is never zero once the activity
has been started22 and foregoing it is never optimal. In a model of optimal control of
atmospheric pollution, Tsur and Zemel (1996) have shown how uncertainty on a tipping
point introduces a multiplicity of possible equilibrium values. Finally, Liski and Salanié
(2018) have also studied a model with unknown tipping points and deep uncertainty, but
with different concerns. Their analysis focuses on the commitment scenario. Instead, we
stress an important time-inconsistency problem in a context of deep uncertainty.

3. THE MODEL

Technology. A decision-maker (thereafter DM) runs a project which puts the environ-
ment at risk. Time is continuous. Let r > 0 be the discount rate. Let also x = (x(τ))τ≥0

(resp. xt = (x(τ))τ≥t) denote an actions plan (resp. the continuation of such a plan from
date t on).

The project may induce a catastrophe, an event that follows a Poisson process with a
(non-homogeneous) rate θ(t).23 That rate depends on the stock X(t) =

∫ t
0
x(τ)dτ of past

actions that have already been taken before date t. More precisely, we postulate

(3.1) θ(t) = θ0 + ∆1{X(t)>X0}

where X0 is a tipping point. Although it remains quite close to a homogeneous Poisson
process, and indeed it is so before and after the tipping point, this specification features
history-dependence on past actions. Indeed, when the cumulative stock of past actions
X(t) passes the tipping point X0, the arrival rate jumps from θ0 to θ1 > θ0. Let ∆ =
θ1 − θ0 > 0 measure this jump.

Preferences. Action x(t) yields a surplus (net of the action cost) at date t worth

ζx(t) − x2(t)
2

where ζ > 0. Action x(t) belongs to an interval X = [0, 2ζ] so that surplus
remains non-negative under all circumstances below. Had he been myopic, DM would
maximize his current payoff by choosing xm(t) = ζ at any date t ≥ 0. This myopic action
is an important benchmark to assess the impact and origins of the precautionary motives
that pertain to the different scenarios we investigate below.

If a disaster occurs at date t, DM incurs an irreversible flow of damages −D from
that date on. With a Poisson process, the long run probability of such event is one. The
discounted welfare loss is thus D

r
. Everything happens as if D

r
was paid upfront and DM

would also enjoy D, viewed as the current benefit of not having a disaster, at any point
in time as long as there is no disaster. To capture the detrimental and irreversible impact
of a disaster, we also assume that, if such an event arises at date t, the flow surplus is
no longer realized from that date on. A justification is that, the disaster is such a large
event that production may no longer be possible afterwards. We will thus think of the
benefit of not facing a disaster as the (not incurred) damage together with the surplus,
and we accordingly define DM ’s such gain as:

u(x(t)) ≡ ζx(t)− x2(t)

2
+D.

22In fact, the probability of the catastrophe in the long run is one.
23The probability that a disaster arises over an interval [t, t+ dt] is thus θ(t)e−

∫ t
0
θ(τ)dτdt and the

probability that there has been no disaster up to date t is e−
∫ t
0
θ(τ)dτ .
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Welfare. Using the Poisson specification of the arrival rate of a disaster, DM ’s expected
discounted welfare at date 0 if he adopts a plan x = (x(t))t≥0 can be expressed as:

(3.2)

∫ +∞

0

e−(rt+
∫ t
0 θ(τ)dτ)u(x(t))dt− D

r
.

DM enjoys both the surplus and the flow benefit of not incurring a disaster as long as
there is no such disaster up to date t, i.e., with probability e−

∫ t
0 θ(τ)dτ . Throughout the

paper, we will specialize this expression to various informational environments.

4. BENCHMARKS

4.1. No Irreversibility with Homogeneous Poisson

We start with the simplest case where DM has no control over the arrival rate of a
disaster, which is kept constant and equal to an exogenous parameter θ0. This scenario
corresponds to the case where the tipping point is at infinity, i.e., X0 = +∞. Specializing
our previous formula (3.2), expected welfare can thus be written as:

∫ +∞

0

e−λ0tu(x(t))dt− D

r

where, for future reference, we denote λ0 = r+ θ0 the effective discount rate that applies
once the possibility of a disaster is taken into account.

Since he cannot influence the arrival rate of the disaster, DM always maximizes current
surplus. The myopic action is always optimal:

xm(t) = ζ ∀t ≥ 0.

It naturally follows that the Precautionary Principle is irrelevant in this no-uncertainty
setting. Any cap on actions would either be irrelevant or reduce welfare.

The net present value of this project is positive whenever

(4.1)
λ1

λ0

V∞ ≥
D

r

where, for future reference, we denote the myopic gain by λ1V∞ = u(ζ) = ζ2

2
+D, and the

effective discount rate that applies when the tipping point has been passed by λ1 = r+θ1.

4.2. Known Tipping Point

Let define t0 as the earliest date at which the tipping point is reached, namely:

t0 = min {t ≥ 0 s.t. X(t) = X0} .

Had DM chosen to always act myopically, the tipping point would be reached at tm = X0

ζ
.

With these notations at hands, we may rewrite DM ’s expected welfare as:∫ t0

0

e−λ0tu(x(t))dt+ e−λ0t0
∫ +∞

t0

e−λ1(t−t0)u(x(t))dt− D

r
.
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The first integral stems for welfare before the tipping point. This term is identical to
that found for an homogeneous Poisson process, although now the upper bound of the
interval is the date t0 at which the tipping point is reached. The second integral stands
for welfare after the tipping point, weighted by the probability of survival up to that date
t0. The only difference is that the arrival rate from that date on has now jumped up.

Dynamic Programming. Consider an action plan xt = {x(τ)}τ≥t from date t onwards.

If the stock at date t is X, this plan induces a stock process X̃(τ ;X, t) which evolves as:

(4.2) X̃(τ ;X, t) = X +

∫ τ

t

x(s)ds.

After having passed the tipping point at date t0, DM always chooses the myopic op-
timal action ζ and gets, from that date on, a discounted continuation payoff worth V∞.
For simplicity, we now omit the discounted damage −D

r
(although it has of course to

be counted to assess the ex ante value of the project). We define the value function

Ṽck(X, t;X0), conditionally on having not yet faced a disaster, with a survival rate being
e−θ0t in this scenario where the value of the tipping point is known being at X0, as

Ṽck(X, t;X0) ≡ sup

t0,xt,X̃(·) s.t. (4.2) and X̃(t0;X, t) = X0

∫ t0

t

e−λ0(τ−t)u(x(τ))dτ+e−λ0(t0−t)V∞.24

Below, we will sometimes slightly abuse notations and, for simplicity, write X̃(τ ;X) ≡
X̃(τ ;X, 0), in which case the trajectory obeys to

(4.3) X̃(τ ;X) = X +

∫ τ

0

x(s)ds.

Observe that we can write Ṽck(X, t;X0) = Vck(X;X0) for all t ≥ 0, where the current
value function Vck(X;X0) verifies

(4.4) Vck(X;X0) ≡ sup

τ0,x,X̃(·) s.t. (4.3) and X̃(τ0;X) = X0

∫ τ0

0

e−λ0τu(x(τ))dτ+e−λ0τ0V∞.

We are now ready to characterize this value function and the associated feedback rule.

Proposition 1 The function Vck(X;X0) is continuously differentiable on [0, X0), con-
tinuous on [0, X0] and it satisfies the following HBJ equation

(4.5) V̇ck(X;X0) = −ζ +
√

2λ0Vck(X;X0)− 2D, ∀X < X0.
25

Vck(X;X0) is decreasing and strictly concave for X ∈ [0, X0) with the boundary condition

(4.6) Vck(X0;X0) = V∞.
24Observe that this expression of V(X, t) is valid both for X < X0, and for X ≥ X0 provided that we

use the convention t0 = t in that latter case.
25At X = X0, this derivative is in fact a left-derivative but we use the same notation for simplicity.
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The optimal feedback rule is such that

(4.7) σck(X;X0) =


ζ + V̇ck(X;X0)︸ ︷︷ ︸

Irreversibility Effect

for X ∈ [0, X0),

ζ for X ≥ X0.

Moreover, σck(X;X0) is decreasing in X for X ∈ [0, X0).

Actions profile. The optimal action goes through two distinct phases. In the first
precautionary phase, i.e., before reaching the tipping point, DM chooses an action which
remains below the myopic optimum. The intuition is straightforward. Actions that have
been taken in the past have a long-lasting impact since they may contribute to passing the
tipping point earlier on. Reducing such actions keeps the probability that a disaster arises
earlier at a low level. More precisely, the quantity −V̇ck(X;X0) found on the right-hand
side of (4.7) is in fact the Lagrange multiplier for the irreversibility constraint

(4.8)

∫ t0

0

x(τ)dτ = X0 −X

where t0 is here the date at which the tipping point X0 is reached starting from an
arbitrary level of the stock X. As X increases without having yet reached X0, this ir-
reversibility constraint becomes more demanding, and the value function is decreasing.
Actions are reduced below the myopic optimum to account for this Irreversibility Effect.

The optimal action is decreasing over time before the tipping point is passed. All actions
taken during the precautionary phase have the same marginal contribution to the overall
stock. Because of discounting, DM prefers to choose the highest actions earlier on and
the lowest ones when approaching the tipping point. Expressed in terms of the value
function, this monotonicity boils down to the strict concavity of Vck(X;X0) during the
precautionary phase. The value function becomes flat once the tipping point has been
passed. By then, DM knows that his actions will no longer have any impact on the
arrival rate of a disaster. We are back to the homogeneous case studied in Section 4.1.
The optimal action is at the myopic optimum from that date on. When the tipping point
is known, the optimal action path is necessarily non-monotonic with actions being first
decreasing and then jumping up to the myopic outcome beyond the tipping point.

In summary, the Precautionary Principle is also irrelevant here. If the action is worth
undertaking, capping actions early on would only transfer utility from the present to the
future, with a net welfare loss.

Tipping Point. Because actions are now lower than the myopic optimum over the first
phase, the tipping point is reached at a date t0 > tm. The intuition for this result is as
follows. By pushing a bit further in the future the date at which the tipping point is
reached by a small amount dt0, DM incurs a welfare loss since, over the precautionary
phase, the action is below the myopic optimum. DM is therefore getting less than the
optimal surplus over a longer period of time. Taking into account discounting and the
probability that no disaster has ever occurred before date t0, this marginal loss can be
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expressed in terms of date 0 utils by discounting payoffs at a rate λ0 = r + θ0 as:

(4.9) e−λ0t0
[
ζx− x2

2

]ζ
σck(X−0 ;X0)

dt0 =
e−λ0t0

2

(
ζ − σck(X−0 ;X0)

)2
.︸ ︷︷ ︸

Marginal loss from not choosing the myopic action over [t0, t0 + dt0]

Moreover, by pushing a bit further in the future the date at which the tipping point is
reached by a small amount dt0, the feasibility constraint is hardened. It has a cost on
DM ’s expected payoff which is worth (when expressed in current value)

(4.10) −∂X̃
∂t

(t;X)|(t0;X0)V̇ck(X−0 ;X0)e−λ0t0dt0 = −x(t−0 )V̇ck(X−0 ;X0)e−λ0t0dt0.

Finally, pushing a bit further that date t0 by dt0 maintains the arrival rate of a disaster at
its low level θ0. By doing so, DM is less likely to losing not only the surplus ζ2

2
achieved

with the myopic action that is optimal for t ≥ t0 but also the flow damage D in case a
disaster occurs. Taking into account the discounted probability of a disaster from date t0
on, the benefit (still expressed in terms of date 0 utils) of delaying the date at which the
tipping point is reached by dt0 can be written as:

(4.11) ∆u(ζ)e−λ0t0
(∫ +∞

t0

e−λ1(t−t0)dt

)
dt0︸ ︷︷ ︸

Marginal benefit of delaying the tipping point by dt0

≡ ∆V∞e−λ0t0dt0.

For future reference, we may thus define the net marginal benefit from pushing the tipping
point further by dt0 that is obtained when gathering (4.9), (4.10) and (4.11) above as(

∆V∞ −
1

2

(
σck(X−0 ;X0)− ζ

)2
+ σck(X−0 ;X0)V̇ck(X−0 ;X0)

)
e−λ0t0dt0

The optimal time t0 at which the tipping point is reached (starting from an initial level
of the stock which is nil) is obtained when this term is zero; a condition which becomes26

(4.12) ζt0 −X0 =
(
ζ −

√
2λ0V∞ − 2D

) 1− e−λ0t0
λ0

.27

Bounds. The value function Vck(X;X0) remains above its long-term limit V∞ reached
when the tipping point has been passed. More interestingly, actions are always strictly
positive even in the first precautionary phase (if the NPV of the project is positive).

Proposition 2 Vck(X;X0) and σck(X;X0) admit the following bounds

(4.13) V∞ ≤ Vck(X;X0) <
λ1

λ0

V∞ ∀X,

26See the Appendix for details.
27It is worth pointing out that, for the constellation of parameters under consideration, passing the

tipping point is always optimal. In other words, D is not so large as to make the project not valuable
upfront or along the course of actions.
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(4.14)
√

2λ0V∞ − 2D ≤ σck(X;X0) ≤ ζ ∀X.28

Positive Net Present Value. The project has a positive net present value whenever

(4.15) Vck(0, X0) ≥ D

r
.

That the arrival rate of a disaster increases to θ1 once the tipping point is passed, implies
that expected welfare is lower than with an homogeneous Poisson process corresponding
to a fixed arrival rate θ0. The condition for running the technology is thus more stringent
as it can be seen from comparing (4.1) and (4.15). In the sequel, we will ensure that the
project always has a positive net present value by imposing the slightly stronger condition

(4.16) V∞ ≥
D

r
.

5. UNCERTAINTY ON THE TIPPING POINT

Consider the more realistic case where the tipping point is not known at the time of
starting the project. We also suppose that, DM knows when the tipping point is passed.
The tipping point X is now a random variable drawn on

[
0, X

]
29 from a known (and

atomless) distribution F . Let f be the corresponding (positive) density.

Dynamic Programming. Consider a process of the form (4.2) which is everywhere

increasing and continuously differentiable. As times passes, the stock X̃(τ ;X, t) goes
through different possible values of the tipping point. Formally, we may also describe this
cumulative process by the time T̃ (X̃;X, t) ≥ t at which the stock reaches a level X̃ ≥ X.

Accordingly, we also define the value function Ṽu1 (X, t) (resp. Ṽu2 (X, t)) as DM ’s optimal
intertemporal payoff starting from date t onwards when the stock level at date t is X
given that DM knows (resp. ignores) that the tipping point has been passed, an event of
probability F (X), and there has been no catastrophe up to date t, an event of probability
e−θ0t if the tipping point has not been passed. Since the optimal action from date t on is
the myopic optimum and the arrival rate of a disaster is θ1, we have

Ṽu1 (X, t) = λ1V∞
∫ +∞

t

e−r(τ−t)e−θ1(τ−t)dτ = V∞.

When the tipping point has not been passed yet, an event of probability 1 − F (X),
DM believes that the tipping point is actually drawn from a truncated distribution with

density f(X̃)
1−F (X)

for X̃ ≥ X. On top, DM also knows that the probability of survival

28Condition (4.16) below, which ensures that the project has a positive NPV , also writes as V∞ >
1
r

(
λ1V∞ − ζ2

2

)
or ζ2

2 > λ1V∞ − rV∞ = θ1V∞ which implies ζ2

2 > ∆V∞ and thus
√

2λ0V∞ − 2D exists.
29With the convention X = +∞ for an infinite support.
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is e−θ0t. Taking into account discounting and the possibility of a regime shift at date
T̃ (X̃;X, t), we thus obtain the following expression for Ṽu2 (X, t) conditionally on having
not yet faced a disaster:

(5.1) Ṽu2 (X, t) = sup
xt,X̃(·) s.t. (4.2)

1

1− F (X)

∫ +∞

X

(∫ T̃ (X̃;X,t)

t

e−r(τ−t)e−θ0(τ−t)u(x(τ))dτ

+e−θ0(T̃ (X̃;X,t)−t)
∫ +∞

T̃ (X̃;X,t)

e−r(τ−t)e−θ1(τ−T̃ (X̃;X,t))λ1V∞dτ

)
f(X̃)dX̃.

The difficulty here is that the maximand in (5.1) depends on both the action plan xt and

the inverse T̃ (X̃;X, t) of the stock accumulation that this plan induces; a quite unusual
feature. Next Lemma simplifies the optimization problem.

Lemma 1 The value function Ṽu2 (X, t) satisfies Ṽu2 (X, t) ≡ Vu(X) for all (X, t) where
Vu(X) is defined as:

(5.2) (1− F (X))Vu(X) ≡ sup
x,X̃(·) s.t. (4.3)

V∞
∫ +∞

0

e−λ0τf(X̃(τ ;X))x(τ)dτ

+

∫ +∞

0

e−λ0τ
(

1− F (X̃(τ ;X))
)
u(x(τ))dτ.30

In this scenario, DM always knows the arrival rate of a catastrophe. Indeed, the mere
fact of knowing that the tipping point will be known when it is passed is enough to know
this arrival rate, either after or before the tipping point. The state of the system can be
reduced to the current stock of past actions exactly as when the tipping point is known.

Hamilton-Bellman-Jacobi (HBJ) Equation. The maximization problem (5.2) has
a recursive structure. As a consequence, the Principle of Dynamic Programming applies.
Next proposition presents the HBJ equation satisfied by Vu(X), together with a char-
acterization of the optimal feedback rule σu(X).

Proposition 3 If the function Vu(X) is continuously differentiable, it satisfies the
following HBJ equation31

(5.3) V̇u(X) =
f(X)

1− F (X)
(Vu(X)− V∞)− ζ +

√
2λ0Vu(X)− 2D

30It is straightforward to check that the curent value function Ṽu(X) is non-increasing in X and thus
almost everywhere differentiable (see the Appendix for details). In the sequel, we will look for a value
function that is actually continuously differentiable. From there, we will deduce a Hamilton-Bellman-
Jacobi equation satisfied by this continuously differentiable value function. A Verification Theorem then
provides sufficient conditions satisfied by the candidate solution.

31For what follows, it is important to remind the heuristic derivation of this HBJ equation. By the
Principle of Dynamic Programming, the payoff Vu(X) is obtained by piecing together an optimal ac-
tion path xε0 over an arbitrary interval [0, ε] with a continuation path xε that yields the corresponding

(non-discounted) continuation payoff Vu(X̃(t+ ε;X, t)). The HBJ equation is then obtained by making
the commitment period ε arbitrarily small, taking Taylor expansions while assuming that the function
Vu(X) is continuously differentiable.32 Reciprocally, Proposition 4 shows that a continuously differen-
tiable solution to the HBJ equation satisfying the boundary condition (5.4) is the value function.
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with the boundary condition

(5.4) lim
X→+∞

(1− F (X))(Vu(X)− V∞) = 0.

The optimal feedback rule is

(5.5) σu(X) = ζ + V̇u(X)︸ ︷︷ ︸
Irreversibility Effect

− f(X)

1− F (X)
(Vu(X)− V∞)︸ ︷︷ ︸

Learning Effect

.

Even though there is uncertainty on where the tipping point lies, the optimal trajectory
takes into account that passing the tipping point remains an irreversible act which leads
to lower actions below the myopic outcome. Everything happens as if V̇u(X) was now
an average Lagrange multiplier for all possible irreversibility constraints associated with
future values of the tipping point. As in Section 4.2, this Irreversibility Effect calls for
reducing actions below the myopic optimum.

Under uncertainty on the tipping point, DM also knows that, starting from a current
stock X increasing action today by dx over a period of time of length dt makes it more
likely that the tipping point will be passed in the very next future since the stock will
increase by dxdt. The conditional probability of such increase would be f(X)

1−F (X)
dxdt while

the expected welfare loss associated with learning that the tipping point has been passed
would be

f(X)

1− F (X)
(Vu(X)− V∞) dxdt.

Reducing actions allows DM to avoid incurring this welfare loss. Because this loss changes
as the probability of being near the tipping point evolves, we call it a Learning Effect.

Last, the Precautionary Principle is irrelevant in this setting. This is because reducing
actions earlier on does not directly influence the rate of arrival of catastrophes. It would
reduce welfare by transferring utility from the present to the future, postponing the
tipping point over time, but resulting in a welfare loss.

Proposition 4 Suppose that F has infinite support. There exists a unique continuously
differentiable function, the current value function, Vu(X) satisfying the HBJ equation
(5.3) and the boundary condition (5.4). Vu(X) and σu(X) admit the following bounds

(5.6) V∞ < Vu(X) <
λ1

λ0

V∞ ∀X ≥ 0,

(5.7)
√

2λ0V∞ − 2D < σu(X) < ζ ∀X ≥ 0.

From (5.1), V∞ is in fact a lower bound for the value function Vu(X). It is readily
obtained by following a sub-optimal strategy consisting in always adopting the myopic
action under all circumstances.
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Condition (5.7) below also shows that not acting is never optimal.33 The example of an
exponential distribution that is developed below provides more intuition on those bounds
on actions. Actions come close to the lower bound when it is very likely that the tipping
point will soon be passed. The Irreversibility Effect is at its maximum. Any further action
may then have a huge impact. Actions are closer to the myopic outcome when instead
they have little impact on the probability of having passed the tipping point.

Exponential Distributions. Here, closed-form solutions are readily obtained. The
optimal action is stationary, always positive and independent of the current stock while
the stock evolves linearly over time.

Proposition 5 Suppose that X is exponentially distributed over R+, i.e., f(X) =
ke−kX and F (X) = 1−e−kX for some k > 0. Closed forms for the current value function,
the optimal feedback rule and the optimal stock are respectively obtained as

(5.8) Vu(X) = V∞ +
λ0

k2
+
ζ

k
−

√(
λ0

k2
+
ζ

k

)2

− 2
∆V∞
k2

∀X ≥ 0,

(5.9) σu(X) =

√(
λ0

k
+ ζ

)2

− 2∆V∞ −
λ0

k
> 0 ∀X ≥ 0,

(5.10) Xu(t) =

√(λ0

k
+ ζ

)2

− 2∆V∞ −
λ0

k

 t ∀t ≥ 0.

Those expressions provide important insights on how uncertainty shapes optimal tra-
jectories. By varying the parameter k, we may go from the pure uninformative Laplacian
distribution over the positive real line (k → 0) to the Dirac distribution putting mass one
at zero (k → +∞); meaning the tipping point is passed almost immediately. Moving to-
wards the Laplacian world (k → 0) can admittedly be viewed as a metaphor for a context
where DM is agnostic on where tipping points lies. The feedback σu(X) then converges
towards the myopic optimum xm = ζ. Indeed, with such large ignorance on where the
tipping point lies, the probability that the tipping point has been passed remains always
the same at any point in time, namely almost zero. In other words, actions that have
already been taken have no impact on the probability of having passed the tipping point
and DM is as well off always opting for the myopic action.

When the distribution comes closer to a Dirac distribution at zero (k → +∞), the
feedback rule σu(X) converges towards the lower bound

√
2λ0V∞ − 2D. Intuitively, DM

refrains from taking large actions because he expects that, otherwise, the stock quickly
crosses almost all values of the tipping point, increasing the likelihood of a disaster.

Positive Net Present Value. DM now chooses to run the risky technology when:

Vu2 (0, 0) = Vu(0) ≥ D

r
.

33Observe also that having an increasing stock process, as requested to ensure that the smooth stock
profile is invertible, requires σu(X) > 0, a condition that is implied by Condition (5.7).
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Because Vu(0) ≥ V∞, this condition is implied by (4.16).

Long-Run Behavior. Beyond the exponential scenario, it is interesting to describe the
long-run behavior of the solution more generally. To this end, we first define the function
R(Y ) = f(F−1(1 − Y )) for all Y ∈ [0, 1] and assume that limX→+∞−f ′(X)

f(X)
exists and

is positive. Let Ṙ(0) > 0 denote this limit. This parameter plays the same role as k
in the case of an exponential distribution. The asymptotic behavior of the solution is
characterized below.

Proposition 6 Vu(X) and σu(X) admit the following approximations when X is large:

(5.11) Vu(X)− V∞ ∼X→+∞
λ0

Ṙ(0)2
+

ζ

Ṙ(0)
−

√(
λ0

Ṙ(0)2
+

ζ

Ṙ(0)

)2

− 2∆V∞
Ṙ(0)2

.34

(5.12) σu(X) ∼X→+∞

√(
λ0

Ṙ(0)
+ ζ

)2

− 2∆V∞ −
λ0

Ṙ(0)
< ζ.

6. DEEP UNCERTAINTY: TIME-INCONSISTENCY

Suppose now that DM does not even know whether the tipping point has been passed
or not; a scenario thereafter coined as being one of deep uncertainty. The key difference
with the less extreme scenario investigated in Section 5 is that DM can no longer switch
to the myopic optimum once the tipping point has been passed since he ignores this event.
Yet, DM must account for that possibility when choosing his action plan.

Survival Rate. We first compute DM ’s beliefs that a disaster will occur over an in-
terval [t, t+ dt] if, starting from an initial stock X ≥ 0 at date 0, the action plan x̄t is

followed up to date t without incurring any disaster. Let X̃(t;X) = X+
∫ t

0
x̄(τ)dτ be the

corresponding stock and T̃ (X̃;X) its inverse function. DM believes that the probability
that a disaster will occur over the interval [t, t+ dt] is g(t; x̄t, X)dt where

g(t; x̄t, X) = (1− F (X̃(t;X))θ0e
−θ0t +

∫ X̃(t;X)

0

θ1e
−(θ0T̃ (X̃;X)+θ1(t−T̃ (X̃;X)))f(X̃)dX̃.

This expression takes into account that, for any date t ≥ 0, all tipping points X̃ such
that X̃ ≤ X̃(t;X) have already been passed and the arrival rate of a disaster has thus

increased from θ0 to θ1. If instead the tipping point is at X̃ such that X̃ > X̃(t;X) ≥ X,
the arrival rate remains θ0. Let also 1 − G(t; x̄t, X) = 1 −

∫ t
0
g(τ ; x̄τ , X)dτ denote the

probability of survival till date t if the path x̄t has been followed to that date.

34To illustrate, suppose that X is drawn according to the logistic distribution with density f(X) =
ke−k(X−X0)

(1+e−k(X−X0))
2 . (Admittedly, this density is defined over the whole real line but negative values have a

very low probability when k goes to +∞.) As k increases towards +∞, this distribution shifts more mass
around the threshold X0 so as to come closer to the scenario where the tipping point is known to be

at that point. Yet, since Ṙ(0) = limX→+∞− f
′(X)
f(X) = k, the optimal action, conditional on not having

passed the tipping point, converges again towards the lower bound
√

2λ0V∞ − 2D.
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Lemma 2 When an increasing path X̃(t;X) has been followed up to date t, the proba-
bility of survival is

(6.1) 1−G(t; x̄t, X) = e−θ0t
(

1−∆e−∆t

∫ t

0

F (X̃(τ ;X))e∆τdτ

)
.

A consequence of (6.1) and the fact that F (X) ≤ F (X̃(t;X)) ≤ 1 for all t ≥ 0 is that

(6.2) e−θ1t ≤ 1−G(t; x̄t, X) ≤ (1− F (X))e−θ0t + F (X)e−θ1t ∀(X, t).

The right-hand side is the expected probability that no disaster has happened up to date
t if DM takes a naive view and considers that only the initial stock matters to assess this
probability. The left-hand side is the “worst” scenario where the tipping point has already
been passed. It can also be interpreted as the long-term belief about the probability
of survival. More generally, (6.1) shows how beliefs evolve along the trajectory. At the

beginning, X̃(t;X) is close to X and the likelihood of having passed the tipping point
close to F (X). DM still believes that the arrival rate of a disaster is close to θ0. As

X̃(t;X) increases, it becomes more likely that the tipping point has been passed and
this rate is thought being close to θ1. Of course, the shape of the distribution function F
matters to evaluate such beliefs. As F puts more mass around X, it becomes more likely
that the tipping point has been passed early on and DM is more inclined to think that
the arrival rate has already shifted to θ1. Instead, if F puts more mass on higher values
of X, DM believes that this rate remains θ0 for a longer period of time.

Value Function. Consider a past history of actions x̄t with no disaster up to date t
and a stock at date t given by X =

∫ t
0
x̄(s)ds. From that date on, this stock will evolve

as X̃(τ ;X, t) = X +
∫ τ
t
x(s)ds where xt = (x(s))s≥t is the stream of future actions. We

define the value function (again gross of −D
r

) as DM ’s continuation payoff starting from
date t onwards given the past history. Importantly, the only information available to DM
at date t is precisely the fact that, with probability F (X), the tipping point has already
been passed and no disaster has yet happened. Only the current stock X at date t thus
matters to evaluate this continuation payoff. We thus denote this payoff as Ṽc(X, t) where

(6.3) Ṽc(X, t) ≡ sup
xt,X̃(·) s.t. (4.2)

∫ X

0

(∫ +∞

t

e−r(τ−t)e−θ1(τ−t)u(x(τ))dτ

)
f(X̃)dX̃

+

∫ +∞

X

(∫ T̃ (X̃;X,t)

t

e−r(τ−t)e−θ0(τ−t)u(x(τ))dτ

+e−θ0(T̃ (X̃;X,t)−t)
∫ +∞

T̃ (X̃;X,t)

e−r(τ−t)e−θ1(τ−T̃ (X̃;X,t))u(x(τ))dτ

)
f(X̃)dX̃.

Observe that Ṽc(X, t) is a double integral, taken first over all possible values of the
tipping point and second over time. Adding up the probabilities of all potential scenarios
with no disaster up to date τ (τ ≥ t) amounts to re-organizing this double integral; first
along time and second along possible values of the tipping point that have already been
passed up to that time. Counting paths this way shows that this overall probability of
survival is precisely 1 − G(τ ; x̄τ , X). Date τ -payoff is thus discounted not only with the
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interest rate but with this survival probability. This is a key difference with the scenarios
described above where a cap on actions could only transfer utility across time. In the
deep uncertainty scenario, it also becomes crucial to think about how to transfer utility
across states. The summary statistic of this feature is the discount rate which is no longer
constant but now depends on the trajectory. Next Lemma summarizes these findings.

Lemma 3 The value function Ṽc(X, t) ≡ Vc(X) satisfies

(6.4) Vc(X) = sup
x,X̃(·),Z̃(·) s.t. (4.3)

∫ +∞

0

e−λ0τ Z̃(τ ;xτ , X)u(x(τ))dτ

where Z̃(τ ;xτ , X) is the survival index defined as

(6.5) Z̃(τ ;xτ , X) = (1−G(τ ;xτ , X))eθ0τ = 1−∆e−∆τ

∫ τ

0

F (X̃(s;X))e∆sds.

The value function Ṽc(X) depends on the current stock X through the impact that

the future trajectory X̃(τ ;X) (for τ ≥ 0) has on the survival index Z̃(τ ;xτ , X). That
index measures how the probability of survival 1−G(τ ; x̄τ , X) will evolve along the future
trajectory relatively to the homogeneous case where its value would be eθ0τ . Everything
thus happens as if date τ -payoff is discounted at a path-dependent rate worth

λ0−
∂Z̃
∂τ

(τ ;xτ , X)

Z̃(τ ;xτ , X)
= λ0−

∆(1− F (X̃(τ ;X))− Z̃(τ ;xτ , X))

Z̃(τ ;xτ , X)
= λ1−

∆(1− F (X̃(τ ;X)))

Z̃(τ ;xτ , X)
.

As the stock X̃(τ ;X) increases and more potential values of the tipping points have
been passed, this term converges towards λ1. Future payoffs are thus viewed as being less
valuable than earlier ones and the less so as X̃(τ ;X) will have increased. Next Lemma
confirms this fundamental property of such non-constant discounting.

Lemma 4 Fix a path of actions x from date 0 on, with a stock evolving as X̃(·; 0).
Consider three dates 0 < t < τ < τ ′. The following inequality holds:

(6.6)
1−G(τ |xτ , 0)

1−G(τ ′|xτ ′ , 0)
<

1−G(τ − t|xτ−t, X̃(t; 0))

1−G(τ ′ − t|xτ ′−t, X̃(t; 0))
.

Lemma 4 shows that the marginal rate of substitution between actions taken at two
dates τ and τ ′ increases with t. In other words, DM values relatively more an action at
a nearby date τ rather than an action taken at a later date τ ′ > τ when this assessment
is postponed. As time passes, a closer date τ -action is viewed as being relatively more
attractive than a more far away date τ ′-action. Intuitively, the right-hand side of (6.6)
measures the extent to which surviving the same additional amount of time τ ′ − τ is
seen as being more unlikely as time passes and no disaster has yet happened, leading
the DM to become more impatient. This monotonicity points at to a fundamental time-
inconsistency in a context of deep uncertainty. Indeed, a solution for (6.4) for X = 0
corresponds to an action plan xc(0) such that xc(τ ; 0) is not immune to re-optimization
of the action plan when the stock has reached X =

∫ t
0
xc(s; 0)ds for 0 < t < τ .

Commitment Solution. Because of this time-inconsistency problem, dynamic pro-
gramming techniques are not directly applicable to characterize the solution to the maxi-
mization problem (6.4). We thus rely on a more direct method by means of optimal control
and Hamiltonian techniques. The main features are summarized in the next proposition.
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Proposition 7 There exists a solution to the optimization problem (6.4). The optimal

path of actions and stock trajectory (xc(t;X), X̃c(t;X)) satisfy the following necessary
condition:

(6.7) xc(t;X) = ζ− ∆

Z̃c(t;X)

∫ +∞

0

f(X̃c(t+τ ;X))e∆τ

(∫ +∞

τ

e−λ1su(xc(t+s;X))ds

)
dτ

where

Z̃c(t;X) = 1−∆e−∆t

∫ t

0

F (X̃c(τ ;X))e∆τdτ.

The optimal action xc(t;X) results from a trade-off between increasing current payoff
when moving towards the myopic optimum and making it more likely to pass the tipping
point at that date; a familiar Irreversibility Effect. Indeed, observe that the marginal
discounted benefits of increasing by dx the action xc(t;X) over an interval [t, t+ dt] is

(6.8) e−λ0tZ̃c(t;X)(ζ − xc(t;X))dxdt.

Such a marginal change of action modifies the whole future trajectory which is shifted
upwards to X̃c(t + τ ;X) + dxdt for τ ≥ 0. When evaluated from date 0 viewpoint, the
cost of passing the tipping point at a date τ ≥ t, thereby increasing the arrival rate of
accident by ∆ and losing future surplus computed along the committed plan of actions
from that date on is thus

(6.9) ∆e−λ0t

(∫ +∞

0

f(X̃c(t+ τ ;X))e∆τ

(∫ +∞

τ

e−λ1su(xc(t+ s;X))ds

)
dτ

)
dxdt.

The optimal action xc(t;X) balances (6.8) and (6.9).

For ease of comparison with our findings in Section 7, it is useful to rewrite the opti-
mality condition at t = 0 as

(6.10) xc(0;X) = ζ + V̇c(X)

where V̇c(X) again measures the overall shadow cost of increasing the current stock.35

Positive Net Present Value. If able to commit to an actions plan from date 0 on,
DM can achieve a payoff Vc(0). The project has thus a positive net present value when

Vc(0) ≥ D

r
.

From (6.2) and (6.4), it immediately follows that

Vc(0) ≥ sup
x

∫ +∞

0

e−λ1τu(x(τ))dτ = V∞.

Therefore, Condition (4.16) is again sufficient to ensure a positive net present value in a
context of deep uncertainty.

35See the derivation of Equation (6.10) in Appendix C.
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Time-Inconsistency. If the solution was time-consistent, the optimal action profile
decided at date 0, namely xc(X), would remain optimal at a future date t > 0 when the

stock will have reached X̃c(t;X). Formally, this would mean that

(6.11) xc(t′;X) ≡ xc(t′ − t; X̃c(t;X)) ∀X, ∀t′ ≥ t ≥ 0.

Importantly, this condition never holds as shown below. The intuition is straightforward
and follows our earlier insights. When date t comes, DM views increasing current action
as more attractive than what was initially thought at date 0.

Proposition 8 The action plan xc(X) is not time-consistent.

If time-consistency requirement (6.11) were to hold, we would also have

xc(t;X) = xc(0; X̃c(t;X)) ∀X, ∀t ≥ 0.

In other words, the optimal action at date t would only depend on the existing stock at
that date. The fact that the optimal solution is not time-consistent thus also shows that
a simple feedback rule that would only depend on the current stock X cannot be used to
achieve the commitment payoff Vc(0). We will come back to this issue in Section 7 below.
There, we consider feed-back rules that depend on X only, just as a time-consistent plan
would require if one existed. That restriction can thus be viewed as being a meaningful
one in a context where no such plan exists.36

7. DEEP UNCERTAINTY: PSEUDO-VALUE FUNCTION AND STOCK-MARKOV EQUILIBRIUM

By adopting a so called Stock-Markov feedback rule, DM chooses the same action
σ∗(X) at any given level of stock X irrespectively of how the past history led to that
stock level. Of course, at an equilibrium of this sort, DM should stick to the feedback
rule σ∗(X) today because he expects to always abide to this rule in the future. Along
such a Stock-Markov trajectory, the stock thus evolves according to

(7.1) X∗(τ ;X) = X +

∫ τ

0

σ∗(X∗(s;X))ds.

In the same vein, the survival index evolves in a way that is consistent with the Stock-
Markov feedback rule σ∗(X). Adapting (6.5), at any date τ and for any initial value of
the stock X and along such a Stock-Markov trajectory, this index should satisfy

(7.2) Z∗(τ ;X) = 1−∆e−∆τ

∫ τ

0

F (X∗(s;X))e∆sds.

We may also adapt (6.4) and now define the pseudo-value function V∗(X) as DM ’s payoff
function along such a Stock-Markov trajectory, namely

(7.3) V∗(X) =

∫ +∞

0

e−λ0τZ∗(τ ;X)u(σ∗(X∗(τ ;X)))dτ.

36The expression of Vc(X) given in (6.4) suggests that the state of the system is best described by
adding to the value of the current stock X another state variable that reflects how the probability of
survival evolves in the future. Two trajectories that reach the same value for the current stock at date t
and keep the same survival rate should be optimally continued the same way. Instead, two trajectories
that have reached the same stock of past actions but are thought to survive with different probabilities
might be pursued along two different paths. To expand state variables and restore the force of dynamic
programming, we show in Appendix C how to use the survival index as another state variable.
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Impulse Deviations. To express the equilibrium requirement that sticking to the feed-
back rule σ∗(X) is optimal at any point along the trajectory, we follow an approach which
is similar in spirit although different in details to that developed in Karp and Lee (2003),
Karp (2005, 2007), Ekeland, Karp and Sumaila (2015) and Ekeland and Lazrak (2006,
2008, 2010). These authors have analyzed various macroeconomic and growth models
with time-inconsistency problems. Roughly speaking it consists in importing the notion
of perfect Markov equilibrium, familiar in discrete-time models, to a continuous time
setting.The idea is to look at the benefits of deviating from the feedback rule for pe-
riods of commitment of arbitrarily small length; deriving from there conditions for the
sub-optimality of such deviations.37

To this end, consider a possible deviation that would consist in committing to an action
x for a period of length ε, reaching a stock level X+xε, before jumping back to the above
feedback rule σ∗. For such a deviation, actions evolve according to

(7.4) y(x, ε, τ ;X) =

{
x if τ ∈ [0, ε],

σ∗(X̃(x, ε, τ ;X)) if τ > ε

while the whole stock trajectory is modified as

(7.5) X̃(x, ε, τ ;X) =

{
X + xτ if τ ∈ [0, ε],

X + xε+
∫ τ
ε
σ∗(X̃(x, ε, s;X))ds if τ ≥ ε.

By adopting the deviation (7.4)-(7.5), the survival index would also change as

(7.6) Z(x, ε, τ ;X) = 1−∆e−∆τ

∫ τ

0

F (X̃(x, ε, s;X))e∆sds.

From this, we may define DM ’s deviation payoff V(x, ε;X) as

(7.7) V(x, ε;X) =

∫ +∞

0

e−λ0τZ(x, ε, τ ;X)u(y(x, ε, τ ;X))dτ.

When ε is made arbitrarily small, we will refer to such deviations as impulse deviations.

We define a Stock-Markov Equilibrium (V∗(X), σ∗(X)) i.e., a payoff function and a
Stock-Markov feedback rule that are immune to such impulse deviations.

Definition 1 (V∗(X), σ∗(X)) is a Stock-Markov Equilibrium if V∗(X) as defined by
(7.3) cannot be improved upon by any impulse deviation of the form (7.4)-(7.5) for ε
made arbitrarily small, i.e.,

(7.8) V∗(X) = lim
ε→0+

max
x∈X
V(x, ε;X).

37To figure out how it could be done more formally, consider a discrete version of our model where DM
would thus commit to an action over each period [t, t+ ε], [t+ ε, t+ 2ε], ...[t+ nε, t+ (n+ 1)ε] (with
n ∈ N). It is then natural to focus on stationary Markov-perfect subgame equilibria for such a discrete
game. In such an equilibrium, DM follows a feedback rule σ∗ε (X) that defines his current action in terms
of the existing stock only. Of course, the equilibrium requirement imposes that this feedback rule is a
best-response given DM ’s anticipations of his own future actions, which should themselves follow the
same feedback rule although, of course, the stock at future dates has evolved according to past actions.
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A Functional Equation Satisfied by V∗(X). Writing the equilibrium condition
suggested by Definition 1 gives us some important properties.

Proposition 9 A continuously differentiable pseudo-value function V∗(X) satisfies the
following functional equation:

(7.9) V̇∗(X) = −ζ +
√

2λ0V∗(X)− 2D + 2∆F (X)ϕ(X)

with the boundary condition

(7.10) lim
X→+∞

V∗(X) = V∞

and where

(7.11) ϕ(X) =

∫ +∞

0

e−λ1τu(σ∗(X∗(τ ;X)))dτ.

The equilibrium feedback rule σ∗(X) satisfies

(7.12) σ∗(X) = ζ + V̇∗(X).

Once envisioning the costs and benefits of an impulse deviation of the form (7.4)-(7.5),
DM takes as given the fact that, in the future, he will stick to the equilibrium feedback
rule and the stock will evolve accordingly. The future evolution of this stock is thus taken
as given to assess the costs and benefits of any putative impulse deviation. Once a given
stock level X has been reached, the marginal gain of increasing by an amount dx the
current action σ∗(X) over an interval of length ε small enough is approximately worth

Z(ε, 0;X)u′(σ∗(X))εdx = (ζ − σ∗(X))εdx

where the right-hand side follows from Z(ε, 0;X) = 1. Such a change in the current
action also modifies the whole future trajectory. The continuation payoff should now be
evaluated at a higher stock, namely X + (σ∗(X) + dx)dt instead of X + σ∗(X)dt. The
marginal cost of increasing current action is thus

V̇∗(X)εdx.

As in the scenario of Section 5 where it is known when the tipping point has been
passed, the choice of an action at a given point in time again balances two effects. First,
moving closer to the myopic optimum for a small period of time, increases current payoff.
Second, increasing the current action raises future stock and thus accordingly reduces
DM ’s continuation payoff since V̇∗(X) < 0. Indeed, for all possible values of the tipping
points that lie above the current value of the stock, the corresponding irreversibility
constraint is thereby hardened. Averaging over all possible such values of the tipping
point again highlights a familiar Irreversibility Effect. This effect calls for reducing current
action. The feedback rule (7.12) is precisely obtained when the marginal benefit of an
impulse deviation is equal to its long run marginal cost.

The feedback rule (7.12) replicates (6.10). While the latter applies only at the start
of the optimization period, the former applies everywhere; which captures the idea that
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each self of the decision-maker behaves as if he was jumpstarting a new optimization of
the trajectory at any point in time.

Existence. At first glance, the functional equation (7.9) looks like a HBJ differential
equation, although it is strikingly different. Indeed, it is non-local and forward-looking.
It depends not only on the current stock but also on future values of the stock along the
equilibrium trajectory. Once contemplating a deviation over an interval of an arbitrarily
small length, DM takes as given the fact that, in the future, he will stick to the time-
consistent feedback rule. The whole profile of these future actions which, from optimality
of the feedback rule, depends on future values of the marginal current-value function, is
thus taken as given to assess the cost and benefit of any putative deviation.

Characterizing the solution to the functional equation (7.9) together with the boundary
condition (7.10) is a difficult endeavor because of the non-local nature of the solution
which makes standard local techniques of no help. To make progresses, we first transform
this functional equation into a system of differential equations which are respectively
satisfied by the pseudo-value function V∗(X), namely (7.9) and the externality component
of the payoff ϕ(X), namely

(7.13) ϕ̇(X) =
λ1(ϕ(X)− V∞) + 1

2
(V̇∗(X))2

V̇∗(X) + ζ
.38

The properties of this system are then easily analyzed under two different scenarios.
First, when the distribution F has finite support (Proposition 10) and, second, with
an unbounded support (Proposition 11). With a finite support, the boundary condition
(7.10) requires that σ∗(X) = ζ and V∗(X) = ϕ(X) = V∞ for all X ≥ X. The system of
differential equations is thus solved backwards from those terminal conditions. Cauchy-
Lipschitz Theorem then applies and allows us to prove existence and uniqueness, of a
solution with those boundary conditions at least locally while Wintner Theorem provides
sufficient conditions that are satisfied by this system so as to ensure global existence.
Intuitively, if the distribution has finite support, DM knows that, when the stock has
passed X, his action has no longer any impact on the arrival rate of a disaster. The myopic
action is thus optimal from that point on. By backward induction, DM can reconstruct
the unique action and payoff profile reaching that terminal point.

Proposition 10 Suppose that F has bounded support of the form
[
0, X

]
where X is

finite. Then, there exists a unique continuously differentiable function, V∗(X), satisfying
the functional equation (7.9) and the boundary condition

(7.14) V∗(X) = V∞

.

Things are more complex when the distribution F has instead an infinite support
because the above backward construction is no longer available. Yet, the Hartman-
Grobman Theorem can be applied to the system of differential equations satisfied by
V∗(X) and ϕ(X). This Theorem shows that, in the neighborhood of the boundary con-
ditions limX→+∞ V∗(X) = limX→+∞ ϕ(X) = V∞, there exists a unique stable manifold

38See Lemma D.4 in the Appendix.
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in the (V , ϕ) space along which all solutions lie. From there, the local uniqueness of the
time-consistent feedback rule σ∗(X) and the pseudo-value function V∗(X) in the limit
X → +∞ follows. In passing, this analysis provides interesting properties of the asymp-
totic behavior of these variables and allows us to derive rather tight bounds. In particular,
the optimal action (which by definition cannot be conditioned on whether the tipping has
been passed or not) now converges towards the myopic optimum while the value function
still converges towards the corresponding myopic payoff.

Proposition 11 Suppose that F has unbounded support. Then, there exists a unique
continuously differentiable function, V∗(X), satisfying the functional equation (7.9) and
the boundary condition (7.10). V∗(X) and σ∗(X) admit the following approximations
when X is large:

(7.15) V∗(X)− V∞ ≈+∞
∆V∞(1− F (X))

ζR′(0) + λ0

,

(7.16) σ∗(X) ≈+∞ ζ − ∆V∞f(X)

ζR′(0) + λ0

.

Bounds. As a by-product, our analysis of the existence of a Stock-Markov Equilibrium
allows us to derive tight bounds on the pseudo-value function and the feed-back rule.
These bounds are the same as in the scenario of Section 5. The dynamics is in fact quite
similar. To illustrate, the upper bound on V∗(X) is readily obtained by following a non-
equilibrium strategy consisting in adopting the myopic action under all circumstances.

Proposition 12 V∗(X) and σ∗(X) admit the following bounds:

(7.17) V∞ < V∗(X) < V∞
(

1 +
∆

λ0

(1− F (X))

)
∀X ≥ 0,

(7.18)
√

2λ0V∞ − 2D < σ∗(X) < ζ ∀X ≥ 0.

In the long run, the stock is likely to have gone through most possible values of the
tipping point. The choice of the action then has almost no longer any influence on the
arrival rate of a disaster which is almost surely θ1. The optimal action thus necessarily
converges towards the myopically optimal decision as shown in (7.16). At the same time,
the pseudo-value function converges towards its value V∞ under a myopic scenario.

8. THE VALUE OF THE PRECAUTIONARY PRINCIPLE

The Precautionary Principle imposes a legal restriction on the set of actions available to
DM . As long as the accumulated stock remains low and few possible values of the tipping
point might have already been passed, actions are capped. That actions remain below the
cap can be legally enforced in a first phase. Later, DM will freely choose actions with no
restriction beyond the equilibrium conditions embodied in a time-consistent plan. While
there is the possibility to commit not to choose actions (at least for a while) beyond
a fixed cap that is chosen ex ante, actions in the second phase depend on the existing
stock and obey equilibrium requirements. The Precautionary Principle is then a device to
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restore some commitment, although a very imperfect one, since the cap is kept constant
and does not evolve with time as the optimal trajectory would require.39

More precisely, suppose that DM is forced to choose a fixed action x over an interval of
length ε > 0 where ε is not necessarily infinitesimal in contrast with our previous analysis
of impulse deviations. The stock then reaches a level xε at the end of this first phase.
Afterwards, DM is free to follow the equilibrium feedback rule σ∗(X) for X ≥ xε. The
benefit of such policy is to be able to commit to a given action over [0, ε]. The cost is that
such a commitment is independent of where the stock lies during that interval while, even
though it is imperfectly so, the time-consistent solution keeps track of such information.

Using the definition of an impulse deviation (7.6) and (7.7), we first write DM ’s in-
tertemporal payoff V(x, ε; 0) in terms of (x, ε) for any arbitrary interval of length ε and
any fixed action x chosen over [0, ε], when starting from an initial stock of zero as

(8.1) V(x, ε; 0) =

∫ +∞

0

e−λ0τZ(x, ε, τ ; 0)u(y(x, ε, τ ; 0))dτ.

From (D.5), the stock trajectory becomes

(8.2) X̃(x, ε, τ ; 0) =

{
xτ if τ ∈ [0, ε],

X∗(τ − ε;xε) = xε+
∫ τ
ε
σ∗(X∗(s− ε;xε))ds if τ ≥ ε.

We assume that the intertemporal payoff V(x, ε; 0) so obtained is a strictly quasi-concave
function of (x, ε) so that first-order conditions for optimality are also sufficient. Of course,
DM should optimize over the fixed action x and the length of the commitment phase ε. A
first and intuitive result is that, at the optimum, the following smooth-pasting condition
should hold:

(8.3) x = σ∗(xε).

A solution to this equation necessarily exists since 0 <
√

2λ0V∞ − 2D < σ∗(0) < ζ.
From strict quasi-concavity, this solution denoted as x∗(ε) is unique. Condition (8.3) just
says that, at the end of the commitment period, DM should move continuously from his
committed action to the equilibrium feedback rule that will be followed from that date
on. If that equality were not to hold, it would have been optimal to extend or contract
the length of the commitment period.

Our key finding is stated in the next proposition.

Proposition 13 A cap on actions for a fixed length of time ε∗ > 0 is optimal if

σ̇∗(0) < 0.

We already know from Section 4.2 that the equilibrium action is decreasing when DM
has complete information on the fact that the tipping point lies at a strictly positive

39Working with a Ramsey model of growth with a Chichilnisky welfare criterion to evaluate trajectories,
Asheim and Ekeland (2015) shows that strategies in any equilibrium with non-commitment are such that
there exists an upper bound on the destruction of natural capital. The limit on actions is thus derived
from equilibrium behavior while it is imposed as a commitment device in our framework.
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level of the stock. The same is true when DM believes that the tipping point is unlikely
earlier on; i.e., when the distribution of possible tipping points puts little mass for low
levels of that tipping point. To illustrate, observe that, taken together (7.9) and (7.12)
and differentiating imply

σ̇∗(0)σ∗(0) = λ0V̇∗(0) + ∆f(0)ϕ(0)

and the right-hand side is negative when f(0) is small enough. Under those circumstances,
actions are too high at the beginning of the trajectory if no constraints are imposed. The
Precautionary Principle is a way of controlling DM ’s incentives to choose such actions.

9. CONCLUSION

This paper discusses the relevance of the Precautionary Principle, a controversial legal
framework that aims at bounding decisions for certain periods of time. We argue that
such a ban only makes sense when there exists a conflict of interests between selves of the
decision-maker acting at different points in time. We propose a simple dynamic setting
where a decision-maker controls actions whose cumulative stock over time increases the
risk of an environmental catastrophe. Deep uncertainty on the location of the tipping
point of the physical process generates a time-inconsistency problem. By generalizing
Bellman techniques in a context where dynamic programming fails, we have characterized
equilibrium paths of actions when the decision-maker can only commit for arbitrarily
small lengths of time. This framework allows us to show under which conditions, imposing
a Precautionary Principle, viewed as a commitment to a fixed action for a given period
of time, helps.

Other models could potentially provide foundations to this Principle, especially when
political considerations are at play. To illustrate, consider the possibility that rotating
decision-makers with different preferences are democratically elected for periods of finite
length. If a first decision-maker knows he is about to step down from power and be
replaced with another decision-maker who cares less about the cost of a catastrophe (or
has less power to decide, for example if the future involves a free trade agreement with
countries that care less about the catastrophe) he might enact laws that stipulate to limit
actions.40 Now the Precautionary Principle is akin to a political constraint on future
decision-makers. Although attractive, such political considerations would also suggest
that a decision-maker who instead does not care much about the catastrophe should
force more prudent followers to adopt a minimal level of actions. In fact, we do not
observe such a reverse Precautionary Principle, which in our view also casts doubt on the
validity of such political economy foundations for the Precautionary Principle.
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APPENDIX A: KNOWN TIPPING POINT

Proofs of Proposition 1 and Proposition 2: Take X < X0 and fix ε small enough so
that X + xε < X0. Denote D(ε) = {x s.t. X + xε < X0}. By the Principle of Dynamic
Programming when applied to (4.4), we must have

Vck(X;X0) ≡ sup
x∈D(ε)

∫ ε

0
e−λ0τu(x)dτ + e−λ0εVck(X + xε;X0).

Taking first-order Taylor approximations when Vck(X;X0) is continuously differentiable in X,
we may rewrite this problem as

Vck(X;X0) = sup
x∈D(ε)

εu(x) + (1− λ0ε)(Vck(X;X0) + xεV̇∗(X;X0)).

The corresponding HBJ equation writes as

(A.1) λ0Vck(X;X0) = max
x

xV̇ck(X;X0)− 1

2
(x− ζ)2 + λ1V∞

together with the boundary condition (4.6).

The maximand of the right-hand side of (A.1) is obtained for the optimal feedback rule (4.7).
Inserting this feedback rule into (A.1) yields

(A.2) λ0Vck(X;X0) = ζV̇ck(X;X0) +
(V̇ck(X;X0))2

2
+ λ1V∞.

Solving this second-degree polynomia for V̇ck(X;X0) and taking the root ensuring that σ∗(X)
as given by (4.7) remains positive yields (4.5).

Comparative Statics. Define

(A.3) V̂(X) =
λ1

λ0
V∞.

From (4.5), we have V̇ck(X;X0) ≤ 0 if and only if Vck(X) ≤ V̂(X). Observe that Vck(X0;X0) <
V̂(X0) because of (4.6). Moreover, Vck(X;X0) were to cross V̂(X) at X1 < X0, we would have
V̇ck(X1;X0) = 0. Observe that V̂(X) is a constant solution to (4.5). Suppose that Vck(X;X0)
were to cross V̂(X) at X1 < X0. By Cauchy-Lipschitz Theorem, the only solution to (4.5)
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which is such Vck(X1;X0) = V̂(X1) is such that Vck(X,X0) = V̂(X) for all X ∈ [0, X0]. This
would contradict the boundary condition (4.6). Hence, necessarily, Vck(X;X0) remains always
below V̂(X) and the right-hand side inequality of (4.13) holds. From (4.5), it then follows that
V̇ck(X;X0) < 0 for X < X0. From (4.6), we thus have necessarily Vck(X;X0) > V∞) for X < X0

and the left-hand side inequality of (4.13) also holds.

Turning now to the optimal action. The right-hand side inequality of (4.14) follows from (4.7)
and V̇ck(X;X0) < 0 for X < X0. The left-hand side inequality follows from the left-hand side
inequality in (4.13), together with (4.5) and (4.7).

Differentiating (A.2) with respect to X yields

(A.4) (V̇ck(X;X0) + ζ)V̈ck(X;X0) = λ0V̇ck(X;X0)

or

(A.5)

(
1 +

ζ

V̇ck(X;X0)

)
V̈ck(X;X0) = λ0.

Because V̇ck(X;X0) < 0 for X ∈ [0, X0) and σck(X;X0) = V̇ck(X;X0) + ζ > 0, we deduce that
V̈ck(X;X0) < 0 for X ∈ [0, X0) and thus σck(X;X0) is decreasing.

Verification Theorem. It is routine and thus omitted.
Q.E.D.

Next proposition presents some detailed analysis of the solution in the case where the tipping
point is known.

Proposition A.1 Suppose that the non-homogeneous Poisson process is defined by (3.1).

• The optimal action is decreasing over t ∈ [0, t0) with xck(t;X0) < xm for all t ∈ [0, t0):

(A.6) xck(t;X0) =

{
ζ −

(
ζ −
√

2λ0V∞ − 2D
)
eλ0(t−t0) for t ∈ [0, t0),

ζ for t ≥ t0

where t0 (with t0 > tm), the date at which the tipping point is reached, is the unique positive
root for

(A.7) ζt0 −X0 =
(
ζ −

√
2λ0V∞ − 2D

) 1− e−λ0t0
λ0

.

• The optimal stock Xck(t;X0) satisfies

(A.8) Xck(t;X0) =

{
ζt−

(
ζ −
√

2λ0V∞ − 2D
)
e−λ0t0 e

λ0t−1
λ0

for t ∈ [0, t0),

ζ(t− t0) +X0 for t ≥ t0.

Proof of Proposition A.1: Integrating (A.5) yields

(A.9) V̇ck(X;X0) + ζ log

(
V̇ck(X;X0)

V̇ck(0;X0)

)
= λ0X + V̇ck(0;X0).
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The date t0 at which a level of the stock X0 is reached, starting from Xck(0;X0) = 0 along
the trajectory

(A.10) Ẋck(t;X0) = σck(Xck(t;X0), X0)

is obtained as

t0 =

∫ t0

0
dt =

∫ Xck(t0;X0)

0

dX̃

σck(X̃;X0)
=

∫ Xck(t0;X0)

0

dX̃

ζ + V̇ck(X̃;X0)

where the last equality follows from (4.7). We rewrite this condition using (A.4) as

λ0t0 =

∫ Xck(t0;X0)

0

V̈ck(X̃;X0)

V̇ck(X̃;X0)
dX̃

or

λ0t0 = log

(
V̇ck(Xck(t0;X0);X0)

V̇ck(0;X0)

)
and thus

(A.11) V̇ck(Xck(t0;X0);X0) = V̇ck(0;X0)eλ0t0 .

From (A.10) and (A.11), we thus obtain

(A.12) Ẋck(t0;X0) = V̇ck(0;X0)eλ0t0 + ζ.

Integrating yields

(A.13) Xck(t0;X0) =
V̇ck(0;X0)

λ0

(
eλ0t0 − 1

)
+ ζt0.

Using (A.11), Xck(t0;X0) = X0 and Vck(X0;X0) = V∞ also gives us

(A.14) V̇ck(0;X0) = V̇ck(X0;X0)e−λ0t0 =
(
−ζ +

√
2λ0V∞ − 2D

)
e−λ0t0

Inserting this expression into (A.13) for t = t0 yields

(A.15) X0 =
−ζ +

√
2λ0V∞ − 2D

λ0

(
1− e−λ0t0

)
+ ζt0.

Therefore, the date t0 at which the tipping point X0 is reached is given by (A.7).

Actions and Monotonicity. Turning now to the optimal action profile, we have

xck(t;X0) = σck(Xck(t;X0);X0) = ζ + V̇ck(Xck(t;X0);X0),

Using (A.14), we obtain for t < t0,

(A.16) xck(t;X0) = ζ −
(
ζ −

√
2λ0V∞ − 2D

)
eλ0(t−t0).

Observe that xck(t;X0) is decreasing with t for t ∈ (0, t0), and constant thereafter.

Stock. We get for t ≤ t0

(A.17) Xck(t;X0) = ζt−
(
ζ −

√
2λ0V∞ − 2D

)
e−λ0t0

(
eλ0t − 1

)
λ0

.
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Moreover, for t ≥ t0, we have xck(t;X0) = ζ and thus

(A.18) Xck(t;X0) = X0 + ζ(t− t0).

Gathering (A.17) and (A.18) yields (A.8).

Unicity of t0. Consider

δ(t) ≡
(
ζ −

√
2λ0V∞ − 2D

) (1− e−λ0t)
λ0

− ζt+X0.

We have

δ′(t) =
(
ζ −

√
2λ0V∞ − 2D

)
e−λ0t− ζ and δ′′(t) = −λ0

(
ζ −

√
2λ0V∞ − 2D

)
e−λ0t < 0.

Hence, δ is strictly concave and thus cross zero at most twice. Since, δ(0) = X0 > 0 and

limt0→+∞ δ(t) = −∞, there is a unique positive root t0 ∈
(
X0
ζ ,+∞

)
for (A.7). Q.E.D.

APPENDIX B: UNCERTAINTY ON THE TIPPING POINT

Proof of Lemma 1: The integral in the maximand on the right-hand side of (5.1) can be
written as∫ +∞

X

(∫ T̃ (X̃;X,t)

t
e−r(τ−t)e−θ0(τ−t)u(x(τ))dτ

+e−λ0(T̃ (X̃;X,t)−t)
∫ +∞

T̃ (X̃;X,t)
e−r(τ−T̃ (X̃;X,t))e−θ1(τ−T̃ (X̃;X,t))λ1V∞dτ

)
f(X̃)dX̃

=

∫ +∞

X

(∫ T̃ (X̃;X,t)

t
e−λ0(τ−t)u(x(τ))dτ + e−λ0(T̃ (X̃;X,t)−t)V∞

)
f(X̃)dX̃.

Integrating by parts this expression, we obtain:

(1− F (X))

∫ +∞

t
e−λ0(τ−t)u(x(τ))dτ

−
∫ +∞

X
(F (X̃)− F (X))

∂T̃

∂X
(X̃;X, t)e−λ0(T̃ (X̃;X,t)−t)

(
u(x(T̃ (X̃;X, t)))− λ0V∞

)
dX̃.

Taking now time as the relevant variable to compute this last integral (i.e., setting X̃ =

X̃(τ ;X, t)⇔ τ = T̃ (X̃;X, t) with dX̃ = ˙̃X(τ ;X, t)dτ = dτ
∂T̃
∂X

(X̃(τ ;X,t);X,t)
), we rewrite

(B.1)

∫ +∞

X
(F (X̃)− F (X))

∂T̃

∂X
(X̃;X, t)e−λ0(T̃ (X̃;X,t)−t)

(
u(x(T̃ (X̃;X, t)))− λ0V∞

)
dX̃

=

∫ +∞

X
(F (X̃)−F (X))

∂T̃

∂X
(X̃;X, t)e−λ0(T̃ (X̃;X,t)−t)

(
u(ζ)− 1

2
(x(τ)− ζ)2 − λ0V∞

)
dX̃

=

∫ +∞

t
(F (X̃(τ ;X, t))− F (X))e−λ0(τ−t)

(
∆V∞ −

1

2
(x(τ)− ζ)2

)
dτ.
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The maximand on the right-hand side of (5.1) is finally expressed as

(1− F (X))

∫ +∞

t
e−λ0(τ−t)

(
λ1V∞ −

1

2
(x(τ)− ζ)2

)
dτ

−
∫ +∞

t
(F (X̃(τ ;X, t))− F (X))e−λ0(τ−t)

(
∆V∞ −

1

2
(x(τ)− ζ)2

)
dτ,

or

(1− F (X))V∞ +

∫ +∞

t
(1− F (X̃(τ ;X, t)))e−λ0(τ−t)

(
∆V∞ −

1

2
(x(τ)− ζ)2

)
dτ.

Changing variables in the integrand yields

(B.2) (1− F (X))V∞ +

∫ +∞

0
(1− F (X̃(τ + t;X, 0)))e−λ0τ

(
∆V∞ −

1

2
(x(τ + t)− ζ)2

)
dτ.

Now, we notice that, if the trajectory X̃(τ ;X, t) with the associated actions x̃(τ ;X, t) =
∂X̃
∂τ (τ ;X, t) for τ ≥ t were to maximize the right-hand side of (B.3), the trajectory X̃(τ ′+t;X, 0)

with the associated actions x̃(τ ′ + t;X, 0) = ∂X̃
∂τ ′ (τ

′ + t;X, 0) would achieve the maximand for
(B.2). Hence, we can rewrite the maximization problem as

(B.3) (1− F (X))Ṽu2 (X, t) = sup
xt,X̃(·) s.t. (4.2)

(1− F (X))V∞

+

∫ +∞

0
e−λ0τ (1− F (X̃(τ ;X))

(
∆V∞ −

1

2
(x(τ)− ζ)2

)
dτ ∀(X, t).

It immediately follows from (B.3) that we can look for a solution of the form Ṽu2 (X, t) = Vu(X)
where Vu(X) is defined as

(B.4)

(1−F (X))(Vu(X)−V∞) ≡ sup
x,X̃(·) s.t. (4.3)

∫ +∞

0
e−λ0τ

(
1− F

(
X̃(τ ;X)

))(
∆V∞ −

1

2
(x(τ)− ζ)2

)
dτ.

After manipulations, we find

(B.5)

(1−F (X))Vu(X) ≡ sup
x,X̃(·) s.t. (4.3)

(
1− F (X)− λ0

∫ +∞

0
e−λ0τ

(
1− F

(
X̃(τ ;X)

)
dτ
))
V∞

+

∫ +∞

0
e−λ0τ

(
1− F

(
X̃(τ ;X)

))
u(x(τ))dτ.

Integrating by parts

1− F (X)− λ0

∫ +∞

0
e−λ0τ

(
1− F

(
X̃(τ ;X)

))
dτ =

∫ +∞

0
e−λ0τf

(
X̃(τ ;X)

)
x(τ)dτ.

Inserting into (B.5) yields (5.2). Q.E.D.
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Proof of Proposition 3: Define Wu(X) = (1− F (X))(Vu(X)− V∞). It solves

(B.6) Wu(X) ≡ sup
x,X̃(·) s.t. (4.3)

∫ +∞

0
e−λ0τ

(
1− F

(
X̃(τ ;X)

))(
∆V∞ −

1

2
(x(τ)− ζ)2

)
dτ.

Existence of Wu(X) (not necessarily continuously differentiable) easily follows from Ekeland
and Turnbull (1983, Corollary 2, p.92).41 When continuously differentiable,Wu(X) satisfies the
following HBJ equation:

(B.7) λ0Wu(X) = sup
x∈X

{
xẆu(X) + (1− F (X))

(
∆V∞ −

1

2
(x− ζ)2

)}
and simplifying as

(B.8) λ0Wu(X) = ζẆu(X) +
(Ẇu(X))2

2(1− F (X))
+ ∆V∞(1− F (X)).

Taking the highest root of this second-degree equation in Ẇu(X) (so as to ensure that the feed-
back rule defined in (B.10) below remains positive leading to a stock profile which is increasing
over time), we rewrite this ordinary differential equation as

(B.9) Ẇu(X) = (1− F (X))

(
−ζ +

√
2λ0V∞ − 2D + 2λ0

Wu(X)

1− F (X)

)

that can finally be written as (5.3).

Feedback rule. Maximizing the right-hand side of (B.7) yields

(B.10) σu(X) = ζ +
Ẇu(X)

1− F (X)

which can finally be written as (5.5).

Boundary Condition. From (B.4) and the fact that 1−F (X +
∫ t

0 x(τ)dτ) converges towards
zero for any non-negative action profile when X → +∞ we obtain

(B.11) lim
X→+∞

Wu(X) = 0.

Q.E.D.

Proof of Proposition 4: Consider (B.9). Let denote the locus of points where Ẇu(X) = 0
as

Ŵ(X) = (1− F (X))
∆

λ0
V∞.

Observe that, Ŵ(0) = ∆
λ0
V∞ > 0, Ŵ(X) is decreasing and goes to 0 as X goes to +∞.

Existence. Consider the domain D = {(X,W )|Ŵ(X) ≥W ≥ 0 for some X ≥ 0}. The bound-

aries of D is made of the vertical segment W ∈ [0, Ŵ(0)], the horizontal axis {W = 0} and

the curve {W = Ŵ(X), X ≥ 0}. Let the flow defined by (B.9) be γ : (W0, X) → W(X|W0)
where W(X|W0) is the solution to (5.3) for some fixed initial value W0. This flow is of course

41Similar existence arguments can be used throughout the paper and won’t be repeated.
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continuous. By construction, any solution W(X|W0) that crosses Ŵ(X) at some X1 ≥ 0 is
such that W(X|W0) is decreasing for X < X1 and increasing for X > X1 and thus can only

cross Ŵ(X) once. Hence, such solution cannot satisfy the boundary condition (B.11). Take any
solution W(X|W0) that crosses the horizontal axis {W = 0} for some X2 ≥ 0. At such point,
(B.9) indicates that Ẇ(X2|W0) < 0. Such solution cannot converge towards 0 either since,
otherwise, there would exist a point X3 > X2 such that Ẇ(X3|W0) = 0 and W(X3|W0) < 0.

At such point, we should also have W(X3|W0) = Ŵ(X3) which yields a contradiction with

W(X3|W0) < 0 < Ŵ(X3).

From these observations, and from the continuity of the flow γ, we deduce that the reciprocal
image of the horizontal line {W = 0} is of the form [0,W02). Similarly, the reciprocal image of

{W = Ŵ(X), X ≥ 0} is of the form (W01, Ŵ(0)] with necessarily W02 ≤W01. Of course, [0,W02)

and (W01, Ŵ(0)] cannot overlap because it would violate the local uniqueness of the solution
W(X|W0) to (5.3) around X = 0 (Cauchy-Lipschitz Unicity Theorem). Thus [W02,W01] is
non-empty and necessarily a solution with W0 ∈ [W02,W01] is such that:

lim
X→+∞

W(X|W0) = 0.

This proves existence of a solutionWu(X) to (B.9) that satisfies the boundary condition (B.11).

Uniqueness. To prove uniqueness of the solution to (5.3) with the boundary condition (5.4),
consider two putative distinct solutions to (5.3), say W1 and W2 satisfying this boundary con-
dition with W1(0) ∈ [W02,W01] and W2(0) ∈ [W02,W01]. Denote ∆W =W1 −W2 and suppose
w.l.o.g that ∆W(0) > 0. Observe that necessarily ∆W(X) > 0 for all X ≥ 0 (otherwise there
would be a contradiction with Cauchy-Lipschitz Unicity Theorem at a putative date X4 where
W1(X4) =W2(X4) would be supposed). We may compute:

˙∆W(X) =
2λ0∆W(X)√

2λ0V∞ − 2D + 2λ0
W1(X)

1−F (X) +
√

2λ0V∞ − 2D + 2λ0
W2(X)

1−F (X)

.

Integrating, we get:

∆W(X) = ∆W(0)e

∫X
0

2λ0dX̃√
2λ0V∞−2D+2λ0

W1(X̃)

1−F (X̃)
+

√
2λ0V∞−2D+2λ0

W2(X̃)

1−F (X̃) .

Observe that both W1 and W2 satisfy

0 <Wi(X) < Ŵ(X)

for i = 1, 2 when W1(0) ∈ [W02,W01] and W2(0) ∈ [W02,W01]. It implies that∫ X

0

2λ0dX̃√
2λ0V∞ − 2D + 2λ0

W1(X̃)

1−F (X̃)
+

√
2λ0V∞ − 2D + 2λ0

W2(X̃)

1−F (X̃)

≥ λ0

ζ
X.

Hence, ∆W(0) > 0 also implies

lim
X→+∞

∆W(X) = +∞.

A contradiction with our assumption that W1 and W2 both satisfy the boundary condition
(5.4). It follows that there exists a unique solution to (5.3) satisfying (5.4).
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Comparative statics. The above analysis shows that any solution Wu(X) also satisfies

(B.12) 0 <Wu(X) < Ŵ(X).

From this, it immediately follows that (5.6).

Inserting now (B.12) into (B.9), we obtain

(1− F (X))
(
−ζ +

√
2λ0V∞ − 2D

)
< Ẇu(X) < 0.

Inserting into (B.10) yields (5.7).

A Verification Theorem. Proposition B.1 shows that the conditions given Proposition 4
to characterize a value function by means of an HBJ equation together with a boundary
conditions are in fact sufficient. We follow Ekeland and Turnbull (1983, Theorem 1, p. 6) and
derive a Verification Theorem.

Proposition B.1 Assume first that there exists a continuously differentiable function W0(X)
which satisfies:

(B.13) λ0W0(X) ≥ xV̇0(X) + (1− F (X))

(
∆V∞ −

1

2
(x− ζ)2

)
∀(x,X);

and, second, that there exists an action profile x0 and X0(t) =
∫ t

0 x0(τ)dτ such that

(B.14) λ0W0(X0(t)) = x0(t)V̇0(X0(t)) + (1− F (X0(t)))

(
∆V∞ −

1

2
(x0(t)− ζ)2

)
∀t ≥ 0.

Then x0 is an optimal action profile with its associated path X0(t).

Proof of Proposition B.1: First observe that Wu(X) as characterized in the Proof of
Proposition 4 is continuously differentiable. It is our candidate for the above function W0(X).
By definition (B.7), we have

(B.15) λ0Wu(X) ≥ xẆu(X) + (1− F (X))

(
∆V∞ −

1

2
(x− ζ)2

)
∀(x,X).

To get (B.14), we use again (B.7) but now applied to the path (x0(t), X0(t)) ≡ (xu(t), Xu(t))
where Xu(t) =

∫ t
0 σ

u(Xu(τ))dτ and xu(t) = σu(Xu(t)).

Define now a value function as W̃u(X, t) = e−λ0tWu(X). By (B.15), we get

(B.16) 0 ≥ ∂W̃u

∂t
(X, t) + x

∂W̃u

∂X
(X, t) + e−λ0t(1− F (X))

(
∆V∞ −

1

2
(x− ζ)2

)
∀(x,X).

Using xu(t) = σu(Xu(t)) and (B.14), we also get

(B.17)

0 =
∂W̃u

∂t
(Xu(t), t)+xu(t)

∂W̃u

∂X
(Xu(t), t)+e−λ0t(1−F (Xu(t)))

(
∆V∞ −

1

2
(xu(t)− ζ)2

)
∀t ≥ 0.

Take now an arbitrary action plan x with the associated path X(t) =
∫ t

0 x(τ)dτ . Let us fix
an arbitrary T > 0. Integrating (B.16) along the path (x(t), X(t)), we compute

0 ≥
∫ T

0

(
∂W̃u

∂t
(X(t), t) + x(t)

∂W̃u

∂X
(X(t), t) + e−λ0t(1− F (X(t)))

(
∆V∞ −

1

2
(x(t)− ζ)2

))
dt
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or

0 ≥
∫ T

0

(
dW̃u

dt
(X(t), t) + e−λ0t(1− F (X(t)))

(
∆V∞ −

1

2
(x(t)− ζ)2

))
dt ∀T ≥ 0

By definition of the total derivative dW̃u

dt (X(t), t), we thus get

W̃u(0, 0) ≥ W̃u(X(T ), T ) +

∫ T

0
e−λ0t(1−F (X(t)))

(
∆V∞ −

1

2
(x(t)− ζ)2

)
dt ∀T ≥ 0.

Because W̃u(X(T ), T ) = e−λ0TWu(X(T )) for all T , we obtain:

W̃u(0, 0) ≥ e−λ0TWu(X(T ))+

∫ T

0
e−λ0t(1−F (X(t)))

(
∆V∞ −

1

2
(x(t)− ζ)2

)
dt ∀T ≥ 0

and, because Wu(X(T )) ≥ 0 for all T from our previous findings, we get

W̃u(0, 0) ≥
∫ T

0
e−λ0t(1− F (X(t)))

(
∆V∞ −

1

2
(x(t)− ζ)2

)
dt ∀T ≥ 0.

Because |e−λ0t(1 − F (X(t)))
(
∆V∞ − 1

2(x(t)− ζ)2
)
| ≤ Me−λ0t for some M when x ∈ X the

above integral converges for any feasible path (x(t), X(t)) as T goes to +∞. Hence, we can write

W̃u(0, 0) ≥
∫ +∞

0
e−λ0t(1− F (X(t)))

(
∆V∞ −

1

2
(x(t)− ζ)2

)
dt.

Moreover, integrating (B.17), the inequality above is indeed an equality for (xu(t), Xu(t)):

W̃u(0, 0) =

∫ +∞

0
e−λ0t(1− F (Xu(t)))

(
∆V∞ −

1

2
(xu(t)− ζ)2

)
dt.

Thus (xu(t), Xu(t)) is indeed an optimal path. Q.E.D.

Q.E.D.

Proof of Proposition 5: The HBJ equation (B.8) now writes as:

(B.18) λ0Wu(X)e−kX =
1

2
(Ẇu(X))2 + ζe−kXẆu(X) + ∆V∞e−2kX .

This expression suggests looking for a solution of the form

Wu(X) = α∗e−kX

for some α∗ > 0. Inserting into (B.18), it is immediate to check that such α∗ is a root to the
following second-order equation:

α∗2

2
−
(
λ0

k2
+
ζ

k

)
α∗ +

∆V∞
k2

= 0.

To ensure that the stock X(t) is an increasing function, we select the lowest non-negative root,
namely

(B.19) α∗ =
λ0

k2
+
ζ

k
−

√(
λ0

k2
+
ζ

k

)2

− 2
∆V∞
k2

.

From there, (5.8), (5.9) and (5.10) immediately follow. Q.E.D.



40 L. GUILLOUET AND D. MARTIMORT

Proof of Proposition 6: To look at the long-run behavior, we first change variables and
define

Y = 1− F (X) ∈ [0, 1] ,Wu(X) = ω(Y ), R(Y ) = f(F−1(1− Y ))

From this, we get

Ẇu(X) = −ω̇(Y )R(Y ).

Inserting into (B.9) yields

(B.20) ω̇(Y ) =
Y

R(Y )

(
ζ −

√
2λ0V∞ − 2D + 2λ0

ω(Y )

Y

)
.

From (B.11), we deduce that

(B.21) ω(0) = 0.

Observe that R(0) = 0 and Ṙ(0) = limY→0
R(Y )
Y . Taking the limit of (B.20) to (Y = 0, ω(0) = 0),

we find that ω̇(0) must solve

ω̇(0) =
1

Ṙ(0)

(
ζ −

√
2λ0V∞ − 2D + 2λ0ω̇(0)

)
.

After manipulations, we find that ω̇(0) must solve (B.19) for k = Ṙ(0). From this, (5.12)
immediately follows. The right-hand side inequality in (5.12) follows from√(

λ0

Ṙ(0)
+ ζ

)2

− 2∆V∞ −
λ0

Ṙ(0)
<

√(
λ0

Ṙ(0)
+ ζ

)2

− λ0

Ṙ(0)
< ζ.

Further, notice that

Wu(X)

1− F (X)
=
ω(Y )

Y

so

lim
X→∞

Wu(X)

1− F (X)
= ω̇(0)

which yields (5.11). Q.E.D.

APPENDIX C: DEEP UNCERTAINTY, TIME INCONSISTENCY

Main Results

Proof of Lemma 2: Integrating by parts, we obtain:∫ X̃(t;X)

0
θ1e
−(θ0T̃ (X̃;X)+θ1(t−T̃ (X̃;X))f(X̃)dX̃ =

F (X̃(t;X))θ1e
−θ0t −∆

∫ X̃(t;X)

0
F (X̃)

∂T̃

∂X̃
(X̃;X)θ1e

−(θ0T̃ (X̃;X)+θ1(t−T̃ (X̃;X)))dX̃.
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Now changing variables and setting X̃ = X̃(τ ;X) (with dX̃ = ∂X
∂τ (τ ;X)dτ) in the integral, we

obtain:

F (X̃(t;X))θ1e
−θ0t −∆

∫ X̃(t;X)

0
F (X̃)

∂T̃

∂X̃
(X̃;X)θ1e

−(θ0T̃ (X̃;X)+θ1(t−T̃ (X̃;X)))dX̃

= θ1e
−θ0t

(
F (X̃(t;X))−∆e−∆t

∫ t

0
F (X̃(τ ;X))e∆τdτ

)
.

From this, it follows that:

g(t; x̄t, X) = (1−F (X̃(t;X))θ0e
−θ0t+θ1e

−θ0t
(
F (X̃(t;X))−∆e−∆t

∫ t

0
F (X̃(τ ;X))e∆τdτ

)
.

Integrating by parts, we finally obtain:

g(t; x̄t, X) = (1− F (X̃(t;X)))θ0e
−θ0t + θ1e

−θ1t
∫ t

0
f(X̃(τ ;X))

∂X̃

∂τ
(τ ;X)e∆τdτ.

Integrating, we obtain:

G(t; x̄t, X) =

∫ t

0

(
(1− F (X̃(τ ;X))θ0e

−θ0τ + θ1e
−θ1τ

∫ τ

0
f(X̃(s;X))

∂X̃

∂s
(s;X)e∆sds

)
dτ

Integrating by parts and simplifying yields

1−G(t; x̄t, X) = (1− F (X̃(t;X))e−θ0t + e−θ1t
∫ t

0
f(X̃(τ ;X))

∂X

∂τ
(τ ;X)e∆τdτ.

Integrating by parts the last term, we now obtain

1−G(t; x̄t, X) = (1−F (X̃(t;X))e−θ0t+e−θ1t
(
F (X̃(t;X))e∆t −∆

∫ t

0
F (X̃(τ ;X))e∆τdτ

)
which finally simplifies as (6.1). Q.E.D.

Proof of Lemma 3: Observe that the first integral in the maximand on the right-hand side
of (6.3) is

I1 =

∫ X

0

(∫ +∞

t
e−r(τ−t)e−θ1(τ−t)u(x(τ))dτ

)
f(X̃)dX̃ = F (X)

∫ +∞

t
e−λ1(τ−t)u(x(τ))dτ.

The second integral on right-hand side of (6.3) is

I2 =

∫ +∞

X

(∫ T̃ (X̃;X,t)

t
e−r(τ−t)e−θ0(τ−t)u(x(τ))dτ

+e−θ0(T̃ (X̃;X,t)−t)
∫ +∞

T̃ (X̃;X,t)
e−r(τ−t)e−θ1(τ−T̃ (X̃;X,t))u(x(τ))dτ

)
f(X̃)dX̃.

Integrating by parts, we obtain:

I2 = (1− F (X))

∫ ∞
t

e−r(τ−t)e−θ0(τ−t)u(x(τ))dτ
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−
∫ +∞

X
(F (X̃)− F (X))

∂T̃

∂X̃
(X̃;X, t)

(
e−r(T̃ (X̃;X,t)−t)e−θ0(T̃ (X̃;X,t)−t)u(x(T̃ (X̃;X, t)))

−e−r(T̃ (X̃;X,t)−t)e−θ0(T̃ (X̃;X,t)−t)u(x(T̃ (X̃;X, t)))

+∆e−θ0(T̃ (X̃;X,t)−t)
∫ +∞

T̃ (X̃;X,t)
e−r(τ−t)e−θ1(τ−T̃ (X̃;X,t))u(x(τ))dτ

)
dX̃.

Simplifying, we get

I2 = (1− F (X))

∫ ∞
t

e−λ0(τ−t)u(x(τ))dτ

−∆

∫ +∞

X
(F (X̃)−F (X))

∂T̃

∂X̃
(X̃;X, t)e−θ0(T̃ (X̃;X,t)−t)

(∫ +∞

T̃ (X̃;X,t)
e−r(τ−t)e−θ1(τ−T̃ (X̃;X,t))u(x(τ))dτ

)
dX̃.

Taking now time as the relevant variable to compute the last integral in I2, i.e., setting

X̃ = X̃(τ ;X, t)⇔ τ = T̃ (X̃;X, t)

with

dX̃ =
˙̃
X(τ ;X, t)dτ =

dτ

∂T̃

∂X̃
(X̃(τ ;X, t);X, t)

.

We thus rewrite

(C.1)∫ +∞

X
(F (X̃)−F (X))

∂T̃

∂X̃
(X̃;X, t)e−θ0(T̃ (X̃;X,t)−t)

(∫ +∞

T̃ (X̃;X,t)
e−r(s−t)e−θ1(s−T̃ (X̃;X,t))u(x(s))ds

)
dX̃

=

∫ +∞

t
(F (X̃(τ ;X, t))− F (X))e−θ0(τ−t)

(∫ +∞

τ
e−r(s−t)e−θ1(s−τ)u(x(s))ds

)
dτ

=

∫ +∞

t
(F (X̃(τ ;X, t))− F (X))e−λ0(τ−t)

(∫ +∞

τ
e−λ1(s−τ)u(x(s))ds

)
dτ.

Summing I1 and I2 gives an expression of the maximand on the right-hand side of (6.3) as

(C.2)

∫ +∞

t

((
F (X)e−λ1(τ−t) + (1− F (X)) e−λ0(τ−t)

)
u(x(τ))

−∆(F (X̃(τ ;X, t))− F (X))e∆τeλ0t
(∫ +∞

τ
e−λ1su(x(s))ds

))
dτ.

Integrating by parts yields

∆

∫ +∞

t
(F (X̃(τ ;X, t))− F (X))e∆τeλ0t

(∫ +∞

τ
e−λ1su(x(s))ds

)
dτ

= ∆

∫ +∞

t
eλ0te−λ1τ

(∫ τ

t
(F (X̃(s;X, t))− F (X))e∆sds

)
u(x(τ))dτ

= −F (X)

∫ +∞

t

(
e−λ0(τ−t) − e−λ1(τ−t)

)
dτ+∆

∫ +∞

t
e−λ0(τ−t)e−∆τ

(∫ τ

t
F (X̃(s;X, t))e∆sds

)
u(x(τ))dτ
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Inserting into (C.2) yields

(C.3)

∫ +∞

t
e−λ0(τ−t)

(
1−∆e−∆τ

∫ τ

t
F (X̃(s;X, t))e∆sds

)
u(x(τ))dτ

Changing variables and setting τ ′ = τ − t and s′ = s− t, we obtain

(C.4)

∫ +∞

0
e−λ0τ

′

(
1−∆e−∆τ ′

∫ τ ′

0
F (X̃(s′ + t;X, t))e∆s′ds′

)
u(x(τ ′ + t))dτ ′.

Or, relabelling variables for keeping consistency of our notations,

(C.5)

∫ +∞

0
e−λ0τ

(
1−∆e−∆τ

∫ τ

0
F (X̃(s+ t;X, t))e∆sds

)
u(x(τ + t))dτ.

Observe that, if the trajectory X̃(τ + t;X, t) with the associated actions x̃(τ + t;X, t) = ∂X̃
∂τ (τ +

t;X, t) were to maximize the right-hand side of (6.3), the trajectory X̃(τ ;X, 0) (≡ X̃(τ ;X) with

our simplified notations) with the associated actions x̃(τ ;X, 0) = ∂X̃
∂τ (τ ;X, 0) would also achieve

the maximand for (C.5). Finally, inserting into the right-hand side of (6.3) and simplifying, this
right-hand side writes as∫ +∞

0
e−rτ (1−G(τ |xτ , X))u(x(τ))dτ.

which finally rewrites as (6.4). Q.E.D.

Proof of Lemma 4: We rewrite the right-hand side of (6.6) as

(C.6)
1−G(τ − t|xτ−t, X̃(t; 0))

1−G(τ ′ − t|xτ ′−t, X̃(t; 0))
=

1−∆e−∆(τ−t) ∫ τ−t
0 F (X̃(s, X̃(t, 0)))e∆sds

1−∆e−∆(τ ′−t)
∫ τ ′−t

0 F (X̃(s, X̃(t, 0)))e∆sds
.

Changing variables and setting s′ = s− t, we get

1−∆e−∆(τ−t)
∫ τ−t

0
F (X̃(s, X̃(t, 0)))e∆sds = 1−∆e−∆τ

∫ τ

t
F (X̃(s′− t, X̃(t, 0)))e∆s′ds′

= 1−∆e−∆τ

∫ τ

t
F (X̃(s′, 0))e∆s′ds′.

Let denote by χ(t, τ) this last quantity, we notice that

(C.7)
1−G(τ − t|xτ−t, X̃(t; 0))

1−G(τ ′ − t|xτ ′−t, X̃(t; 0))
=
χ(t, τ)

χ(t, τ ′)
.

Observe now that

∂

∂t
log(χ(t, τ)) =

∂χ
∂t (t, τ)

χ(t, τ)
=

∆e∆tF (X̃(t, 0))

e∆τ −∆
∫ τ
t F (X̃(s, 0))e∆sds

and thus

∂2

∂τ∂t
log(χ(t, τ)) = −

∆2e∆te∆τF (X̃(t, 0))
(

1− F (X̃(τ, 0))
)

(
e∆τ −∆

∫ τ
t F (X̃(s, 0))e∆sds

)2 < 0.
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From this it follows that, for all 0 < t < τ < τ ′, we have

log(χ(t, τ ′))− log(χ(t, τ)) < log(χ(0, τ ′))− log(χ(0, τ))

or

χ(t, τ)

χ(t, τ ′)
>
χ(0, τ)

χ(0, τ ′)
.

Inserting into (C.7) yields (6.6). Q.E.D.

Proof of Proposition 7 : Observe that Z̃(τ ;xτ , X) satisfies

(C.8)
∂Z̃

∂τ
(t;X) = ∆(1− F (X̃(tτ ;X))− Z̃(τ ;X)) with Z̃(0;X) = 1.

Existence and Properties of Vc(X). Existence of a solution to the optimization problem
(6.4) follows from applying Dmitruk and Kuzkina (2005, Theorem 1, together with the analysis
of the special case of discounting in Section 5 of this paper). Vc(X) < +∞ thus exists. Denote
by (X̃c(τ ;X), Z̃c(τ ;X), xc(τ ;X)) an optimal arc. By definition of the suboptimality of the arc
(X̃c(τ ;X ′), Z̃c(τ ;X ′), xc(τ ;X ′)) when the initial stock is X ′, the following inequality holds for
any pair (X,X ′):

Vc(X) ≥
∫ +∞

0

(
1−∆e−∆τ

∫ τ

0
F (X +

∫ τ

0
xc(s;X ′))e∆sds

)
u(xc(τ ;X ′))dτ.

We express the right-hand side in terms of Vc(X ′) to get:

Vc(X)− Vc(X ′) ≥

∆

∫ +∞

0
e−∆τ

∫ τ

0

(
F (X +

∫ τ

0
xc(s;X ′))−F (X ′+

∫ τ

0
xc(s;X ′))

)
e∆τds

)
u(xc(τ ;X ′))dτ.

From which, we deduce

|Vc(X ′)− Vc(X)| ≤ ∆V∞‖f‖|X ′ −X|.

Hence, Vc(X) is Lipschitz continuous, and thus absolutely continuous and a.e. differentiable
with a derivative given by (C.18) below.

Maximum Principle. We now define the Hamiltonian for this optimization problem as

H(X̃, Z̃, x, τ, µ, ν) = e−λ0τ Z̃u(x) + µx+ ν∆(1− F (X̃)− Z̃)

where µ and ν are respectively the costate variables for (4.3) and (C.8). The Maximum Principle
now gives us the following necessary conditions for optimality of an arc (X̃c(τ ;X), Z̃c(τ ;X), xc(τ ;X)).42

Costate variables. µ(τ ;X) and ν(τ ;X) are both continuously differentiable on R+ with

−µ̇(τ,X) =
∂H
∂X̃

(X̃c(τ ;X), Z̃c(τ ;X), xc(τ ;X), µ(τ ;X), ν(τ ;X))

or

(C.9) µ̇(τ ;X) = ∆f(X̃c(τ ;X))ν(τ ;X) ∀τ ≥ 0;

42Seierstad and Sydsaeter (1987).
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and

−ν̇(τ,X) =
∂H
∂Z̃

(X̃c(τ ;X), Z̃c(τ ;X), xc(τ ;X), µ(τ ;X), ν(τ ;X))

or

(C.10) ν̇(τ ;X) = −e−λ0τu(xc(τ ;X)) + ∆ν(τ ;X) ∀τ ≥ 0.

Transversality conditions. The boundary conditions X̃c(X, 0) = X and Z̃c(X, 0) = 1 imply that
there are no transversality conditions on µ(τ ;X) and ν(τ ;X) at τ = 0. Applying Michel (1982,
Theorem, p. 997), the necessary transversality condition at +∞ writes as

(C.11) lim
τ→+∞

H(X̃c(τ ;X), Z̃c(τ ;X), xc(τ ;X), µ(τ ;X), ν(τ ;X)) = 0.

Given that the integrand is non-negative (Michel, 1982, Corollary, p. 997) this condition implies

(C.12) lim
τ→+∞

µ(τ ;X) = lim
τ→+∞

ν(τ ;X) = 0.

Control variable xc(τ ;X).

xc(τ ;X) ∈ arg max
x≥0
H(X̃c(τ ;X), Z̃c(τ ;X), x, µ(τ ;X), ν(τ ;X)).

Because H(X̃c(τ ;X), Z̃c(τ ;X), x, µ(τ ;X), ν(τ ;X)) is strictly concave in x, an interior solution
satisfies

∂H
∂x

(X̃c(τ ;X), Z̃c(τ ;X), xc(τ ;X), µ(τ ;X), ν(τ ;X)) = 0

or

(C.13) xc(τ ;X) = ζ + eλ0τ
µ(τ ;X)

Z̃c(τ ;X)
.

Characterization. Using (C.12) and integrating (C.9) yields

(C.14) µ(τ ;X) = −
∫ +∞

τ
∆f(X̃c(s;X))ν(s;X)ds.

The solution for (C.10) is of the form

ν(τ ;X) = Ce∆τ − e∆τ

∫ +∞

τ
e−λ1su(xc(s;X))ds

where C is some integration constant. From (6.2), we have

(C.15) e−∆τ ≤ Z̃c(τ ;X) ≤ 1− F (X) + F (X)e−∆τ ∀τ ≥ 0.

The only possibility for satisfying the transversality condition (C.12) is thus C = 0 and we get

(C.16) ν(τ ;X) = e∆τ

∫ +∞

τ
e−λ1su(xc(s;X))ds.



46 L. GUILLOUET AND D. MARTIMORT

Inserting into (C.14) yields

(C.17) µ(τ ;X) = −
∫ +∞

τ
∆f(X̃c(s;X))e∆s

(∫ +∞

s
e−λ1s

′
u(xc(s′;X))ds′

)
ds.

Finally inserting into (C.13), we obtain

xc(τ ;X) = ζ − ∆eλ0τ

Z̃c(τ ;X)

∫ +∞

τ
f(X̃c(s;X))e∆s

(∫ +∞

s
e−λ1s

′
u(xc(s′;X))ds′

)
ds.

Changing variables yields

xc(τ ;X) = ζ− ∆eλ0τ

Z̃c(τ ;X)

∫ +∞

0
f(X̃c(s′+ τ ;X))e∆(s′+τ)

(∫ +∞

s′+τ
e−λ1s

′′
u(xc(s′′;X))ds′′

)
ds′

and thus

xc(τ ;X) = ζ− ∆eλ0τ

Z̃c(τ ;X)

∫ +∞

0
f(X̃c(s′+τ ;X))e∆(s′+τ)

(∫ +∞

s′
e−λ1(s′′′+τ)u(xc(s′′′+τ ;X))ds′′′

)
ds′.

We thus rewrite this condition as (6.7).

In particular, at any point of differentiability of Vc(X), we have

(C.18) V̇c(X) = µ(0;X).

Inserting into (C.13) gives (6.10). Q.E.D.

Proof of Proposition 8: By definition, we have

X̃c(t′;X) = X̃c(t;X) +

∫ t′

t
xc(τ ′;X)dτ ′ ∀X,∀t′ ≥ t ≥ 0.

If (6.11) were to hold, we would have

X̃c(t′;X) = X̃c(t;X) +

∫ t′

t
xc(τ ′ − t; X̃c(t;X))dτ ′ ∀X,∀t′ ≥ t ≥ 0.

Changing variables in the integral yields

X̃c(t′;X) = X̃c(t;X) +

∫ t′−t

0
xc(τ ; X̃c(t;X))dτ ∀X,∀t′ ≥ t ≥ 0

and thus, by direct integration,

(C.19) X̃c(t′;X) = X̃c(t′ − t; X̃c(t;X)) ∀X,∀t′ ≥ t ≥ 0.

By simply adapting definition (6.7), re-optimizing at date t > 0 when the stock has reached
level X̃c(t;X) yields an optimal action for date t′ ≥ t which is now given by

xc(t′ − t; X̃c(t;X)) = ζ−

∆

Z̃c(t′ − t; X̃c(t;X))

∫ +∞

0
e−λ1τ

(∫ τ

0
f(X̃c(t′−t+s; X̃c(t;X)))e∆sds

)
u(xc(t′−t+τ ; X̃c(t;X)))dτ,∀t′ ≥ t
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where

Z̃c(t′ − t; X̃c(t;X)) = 1−∆e−∆(t′−t)
∫ t′−t

0
F (X̃c(t′ − t+ τ ; X̃c(t;X)))e∆τdτ.

In particular, taking t′ = t yields

(C.20)

xc(0; X̃c(t;X)) = ζ−∆

∫ +∞

0
e−λ1τ

(∫ τ

0
f(X̃c(s; X̃c(t;X)))e∆sdτ

)
u(xc(τ ; X̃c(t;X)))dτ,∀t′ ≥ t.

Using (6.11) and (C.19), we simplify (C.20) as

(C.21)

xc(0; X̃c(t;X)) = ζ−∆

∫ +∞

0
e−λ1τ

(∫ τ

0
f(X̃c(t+s;X))e∆sdτ

)
u(xc(t+τ ;X))dτ ∀t ≥ 0.

If the solution is time-consistent, (6.11) would imply that the expressions in (6.7) and (C.21)
are the same. However, it can never be possible for t > 0 since then Z̃c(t;X) < 1. Q.E.D.

Extended Value Function

The expression of Vc(X) given in (6.4) suggests that the state of the system is best described
by adding to the value of the current stock X another state variable that reflects how the
probability of survival evolves in the future. Two trajectories that reach the same value for the
current stock at date t and keep the same survival rate should be optimally continued the same
way. Instead, two trajectories that have reached the same stock of past actions but are thought
to survive with different probabilities might be pursued along two different paths.

To expand state variables and restore the force of dynamic programming, we now use the
survival index Z̃ as another state variable. To be able to track how this variable evolves, we
consider the following law of motion

(C.22)
∂Z̃

∂τ
(τ ;X,Z) = ∆(1− F (X̃(τ ;X,Z))− Z̃(τ ;X,Z)) with Z̃(0;X,Z) = Z

where we now make explicit the dependence of the stock X̃(τ ;X,Z) on the new state variable Z.
As the stock X̃(τ ;X,Z) increases, the term 1− F (X̃(τ ;X,Z)), that represents the probability
that the tipping point lies above the existing stock, decreases and DM becomes less optimistic.
On the other hand, once Z̃(τ ;X,Z) decreases, surviving is viewed as being relatively good news,
an effect which pushes the survival index up.

Integrating (C.22), we immediately get

(C.23) Z̃(τ ;X,Z) = (Z − 1)e−∆τ + 1−∆e−∆τ

∫ τ

0
F (X̃(s;X,Z))e∆sds.

From this, we may define the extended value function Vce(X,Z) for any X ≥ 0 and any Z ∈ (0, 1]
as

(C.24) ZVce(X,Z) = sup
x,X̃(·),Z̃(·) s.t. (4.3) and (C.22)

∫ +∞

0
e−λ0τ Z̃(τ ;X,Z)u(x(τ))dτ.
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The choice to factorize Z on the left-hand side views the extended value function as being
computed conditionally on survival up to that point. Together with an associated feedback rule
σce(X,Z), this extended value function defines the full trajectory of the system both in terms of
the overall stock X̃(τ ;X,Z) but also of the survival index Z̃(τ ;X,Z). In particular, the intertem-
poral payoff Vc(0) = Vce(0, 1) is achieved by adopting the action profile σc(X̃(τ ; 0, 1), Z̃(τ ; 0, 1))
starting from the initial conditions of the system X = 0 and Z = 1.

The extended value function Vce(X,Z) is a mere technical device to compute the value function
Vc(X). It allows to use dynamic programming techniques in a time-inconsistency context.43

Yet, the feedback rule σce(X,Z) cannot be viewed as a practical way of guiding actions. Indeed,
obeying to such a rule requires to keep track of beliefs along the trajectory. It might be a task
of tall order, especially when beliefs might be manipulated; an issue of prime importance in a
context where experts may face difficulties in conveying evidence. It is thus natural to look at
a solution concept that does not depend on the survival index; a task undertaken in Section 7.

Next proposition provides some key properties of the extended value function Vce(X,Z).

Proposition C.1 A continuously differentiable extended value function Vce(X,Z) satisfies the
following bi-dimensional HBJ partial differential equation:

(C.25)
∂Vce
∂X

(X,Z) = −ζ+√
ζ2 + 2

(
λ0 −

∆(1− F (X)− Z)

Z

)
Vce(X,Z)− 2λ1V∞ − 2∆(1− F (X)− Z)

∂Vce
∂Z

(X,Z)

with the boundary condition

(C.26) 0 ≤ ZVce(X,Z) ≤
(
F (X) + (1− F (X))

λ1

λ0

)
V∞ ∀X ≥ 0, ∀Z ∈ (0, 1].

The feedback rule is

(C.27) σce(X,Z) = ζ +
∂Vce
∂X

(X,Z).

Confirming earlier remarks, the structure of payoffs as in (C.24) shows that the discount rate
for date τ payoffs is now non-constant and of the form

R(τ,X,Z) = λ0 −
˙̃
Z(τ ;X,Z)

Z̃(τ ;X,Z)
≡ λ0 −

∆(1− F (X̃(τ ;X,Z))− Z̃(τ ;X,Z))

Z̃(τ ;X,Z)

Using the survival index as a state variable allows to keep track of this time-dependency. Future
payoffs are counted with this non-constant discounting, which explains the factor of Vce(X,Z) on
the right-hand side of (C.25). The choice of an action x(t) at date t has no direct consequences
on how this implicit discount rate evolves, as it can be seen on (C.22). Yet, because the stock and

43Marcet and Marimon (2019) have presented a general theory of discrete-time optimization problems
with forward-looking constraints, a feature that prevails in a number of macroeconomic and political
economy contexts (Aiyagari et al., 2002, Acemoglu et al., 2011, Attanasio and Rios-Rull, 2002 among
others). Our continuous time model is somewhat simpler since, in the scenario of deep uncertainty, payoffs
themselves have a forward-looking component. Marcet and Marimon (2019) have shown how to recover a
recursive structure to the optimization problems by adding multipliers of the forward-looking constraints
as state variables which follow a specific evolution. In our context, a recursive structure can be found
when the belief index is used as an extra state variable
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the survival index themselves evolve over time, the value of this discount rate keeps changing
and DM must take this into account to assess how his future payoffs will vary with the index.
It explains the last term on the the right-hand side of (C.25).

Proof of Proposition C.1: We first slightly abuse notations and vocabulary to define an-
other value function Wc

e(X,Z) as

Wc
e(X,Z) = ZVce(X,Z).

Proposition C.2 A continuously differentiable value functionWc
e(X,Z) satisfies the following

HBJ equation:

(C.28)

λ0Wc
e(X,Z) = λ1V∞Z+ζ

∂Wc
e

∂X
(X,Z)+

1

2Z

(
∂Wc

e

∂X
(X,Z)

)2

+∆(1−F (X)−Z)
∂Wc

e

∂Z
(X,Z)

with the boundary conditions

(C.29) 0 ≤ Wc
e(X,Z) ≤ V∞ + (1− F (X))

∆

λ0
V∞.

The feedback rule is given by

(C.30) σce(X,Z) = ζ +
1

Z

∂Wc
e

∂X
(X,Z).

Proof of Proposition C.2: Consider Z ∈ [0, 1]. Using the Dynamic Programming Princi-
ple, Wc

e(X,Z) satisfies

(C.31) Wc
e(X,Z) = sup

x,X̃(·),Z̃(·) s.t. (4.3) and (C.22)

∫ ε

0
e−λ0tZ̃(t;X,Z)u(x(t))dt

+e−λ0εWc(X̃(ε;X,Z), Z̃(ε;X,Z)).

Consider now ε small enough and denote by x a fixed action over the interval [0, ε]. From (4.3)
and (C.22), we get

X̃(ε;X,Z) = X + εx+ o(ε)

and

Z̃(ε;X,Z) = Z + ε∆(1− F (X)− Z) + o(ε)

where limε→0 o(ε)/ε = 0.

When Wc
e(X,Z) is continuously differentiable, we can take a first-order Taylor expansion in

ε of the maximand in (C.31) to write it as:

Wc
e(X,Z)+

ε

(
Zu(x) + x

∂Wc
e

∂X
(X,Z) + ∆(1− F (X)− Z)

∂Wc
e

∂Z
(X,Z)− λ0Wc

e(X,Z)

)
+ o(ε).
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Inserting into (C.31) yields the following HBJ equation:

(C.32) λ0Wc
e(X,Z) = sup

x∈X

{
Zu(x) + x

∂Wc
e

∂X
(X,Z) + ∆(1− F (X)− Z)

∂Wc
e

∂Z
(X,Z)

}
.

Feedback Rule. From this, it immediately follows that the feedback rule is given by (C.30).
Simplifying (C.32) using the feedback rule (C.30) finally yields (C.28).

Boundary Condition. Now, observe that (C.22) and F (X) ≤ F (X̃(τ ;X,Z)) ≤ 1 imply

0 ≤ ∂

∂τ

(
Z̃(τ ;X,Z)e∆τ

)
≤ ∆(1− F (X))e∆τ .

Integrating between 0 and t yields

0 ≤ Ze−∆τ ≤ Z̃(τ ;X,Z) ≤ Ze−∆τ + (1− F (X))
(
1− e−∆τ

)
.

From this and the fact that 0 ≤ Z ≤ 1, it follows that

(C.33) 0 ≤ Ze−∆τ ≤ Z̃(τ ;X,Z) ≤ F (X)e−∆τ + 1− F (X) ≤ 1.

Henceforth, the whole trajectory Z̃(τ ;X,Z) always remains in the stable domain [0, 1].

From the third inequality in (C.33), taking maximum on the right-hand side of (C.24), the
right-hand side inequality of (C.29) follows. From the first inequality in (C.33), we immediately
get the left-hand side inequality of (C.29). Q.E.D.

A Verification Theorem. Proposition C.3 below shows that the conditions given Proposition
C.1 to characterize the commitment value function by means of an HBJ equation together with
boundary conditions are in fact sufficient. We again follow Ekeland and Turnbull (1983, Theorem
1, p. 6) to derive a Verification Theorem.

Proposition C.3 Assume first that there exists a continuously differentiable functionW0(X,Z)
which satisfies:

(C.34)

λ0W0(X,Z) ≥ Z̃(t;X,Z)u(x)+x
∂W0

∂X
(X,Z)+∆(1−F (X)−Z̃(t;X,Z))

∂W0

∂Z
(X,Z) ∀(x,X,Z);

and, second, that there exists an action profile x0 and a path X0(t) =
∫ t

0 x0(τ)dτ , Z0(t) =

1−∆e−∆t
∫ t

0 F (X0(τ))e∆τdτ such that

(C.35) λ0W0(X0(t), Z0(t)) = Z0(t)u(x0(t))

+x0(t)
∂W0

∂X
(X0(t), Z0(t)) + ∆(1− F (X0(t))− Z0(t))

∂W0

∂Z
(X0(t), Z0(t)) ∀t ≥ 0.

Then x0 is an optimal action profile with its associated path (X0(t), Z0(t)).
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Proof of Proposition C.3: Suppose thus that Wc
e(X,Z) as characterized in Proposition

C.2 is continuously differentiable. It is our candidate for the functionW0(X,Z) in the statement
of Proposition C.3. By definition (C.32), we have

λ0Wc
e(X,Z) = Zu(σce(X,Z))+σce(X,Z)

∂Wc
e

∂X
(X,Z)+∆(1−F (X)−Z)

∂Wc
e

∂Z
(X,Z), ∀(X,Z)

and thus

(C.36) λ0Wc
e(X,Z) ≥ Zu(x) + x

∂Wc
e

∂X
(X,Z) + ∆(1− F (X)− Z)

∂Wc
e

∂Z
(X,Z), ∀(x,X,Z)

where the inequality comes from the fact that σce(X,Z) maximizes the right-hand side.

To get (C.35), we use again (C.32) but now applied to the path (xc(t), Xc(t), Zc(t)) where
Xc(t) is such that Ẋc(t) = xc(t) = σc(Xc(t), Zc(t)) withXc(0) = 0 and Zc(t) = 1−∆e−∆t

∫ t
0 F (Xc(τ))e∆τdτ .

Define now a value function W̃c(X,Z, t) = e−λ0tWc
e(X,Z). By (C.36), we get

(C.37)

0 ≥ ∂W̃c

∂t
(X,Z, t)+x

∂W̃c

∂X
(X,Z, t)+∆(1−F (X)−Z)

∂W̃c

∂Z
(X,Z, t)+e−λ0tZu(x) ∀(x,X,Z).

Using xc(t) = σc(Xc(t), Zc(t)), Zc(t) = 1−∆e−∆t
∫ t

0 F (Xc(τ))e∆τdτ and (B.14), we also get

(C.38) 0 =
∂W̃c

∂t
(Xc(t), Zc(t), t) + xc(t)

∂W̃c

∂X
(Xc(t), Zc(t), t)

+∆(1− F (Xc(t))− Zc(t))∂W̃
c

∂Z
(Xc(t), Zc(t), t) + e−λ0tZc(t)u(xc(t)) ∀t ≥ 0.

Take now an arbitrary action plan x with the associated path X(t) =
∫ t

0 x(τ)dτ and Z(t) =

1 −∆e−∆t
∫ t

0 F (X(τ))e∆τdτ . Let us fix an arbitrary T > 0. Integrating (C.37) along the path
(x(t), X(t), Z(t)), we compute

0 ≥
∫ T

0

(
∂W̃c

∂t
(X(t), Z(t), t) + x(t)

∂W̃c

∂X
(X(t), Z(t), t)

+∆(1− F (X(t))− Z(t))
∂W̃c

∂Z
(X(t), Z(t), t) + e−λ0tZ(t)u(x(t))

)
dt

or

0 ≥
∫ T

0

(
dW̃c

dt
(X(t), Z(t), t) + e−λ0tZ(t)u(x(t))

)
dt ∀T ≥ 0.

By definition of the total derivative of W̃c(X(t), Z(t), t) with respect to time, we thus get

W̃c(0, 0, 0) ≥ W̃c(X(T ), Z(T ), T ) +

∫ T

0
e−λ0tZ(t)u(x(t))dt ∀T ≥ 0.

Because W̃c(X,Z, t) = e−λ0tWc(X,Z) ≥ 0 for all (X,Z, t), we obtain:

Wc(0, 0) ≥ e−λ0TWc(X(T ), Z(T )) +

∫ T

0
e−λ0tZ(t)u(x(t))dt ∀T ≥ 0.
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Because of the boundary conditions (C.29), e−λ0TWc(X(T ), Z(T )) converges towards zero as
T → +∞ for any feasible path. Moreover, for any such feasible path

∫ +∞
0 e−λ0tZ(t)u(x(t))dt

exists. Henceforth, we get:

Wc(0, 0) ≥ sup
x

∫ +∞

0
e−λ0tZ(t)u(x(t))dt

which shows that (xc(t), Xc(t), Zc(t)) is indeed an optimal path. Q.E.D.

Boundary condition. An immediate corollary of (C.29) is thus (C.26).

Partial Differential Equation. Rewriting the optimality conditions in terms of Vce(X,Z),
(C.28) becomes

λ0Vce(X,Z) = λ1V∞+ ζ
∂Vce
∂X

(X,Z) +
1

2

(
∂Vce
∂X

(X,Z)

)2

+
∆(1− F (X)− Z)

Z

∂Wc
e

∂Z
(X,Z).

Solving this second-degree equation and keeping solution ensuring a positive feedback rule yields

(C.39)
∂Vc

∂X
(X,Z) = −ζ+

√
ζ2 + 2λ0Vce(X,Z)− 2λ1V∞ − 2

∆(1− F (X)− Z)

Z

∂

∂Z
(ZVce(X,Z)).

Developing further yields (C.25).

Q.E.D.

Long-Run Behavior

We now characterize the asymptotic behavior of the commitment solution. In the long run,
the optimal commitment solution entails almost choosing a fix action σc ∈ [0, ζ]. This action
solves

(C.40)
(ζ − σc)(λ0 + Ṙ(0)σc)

∆− Ṙ(0)σc
= Ṙ(0)

(
V∞ −

1

2λ1
(ζ − σc)2

)
.

Observe that the right-hand side of (C.40) is worth Ṙ(0)V∞ > 0 at σc = ζ while the left-hand
side is worth zero. The left-hand side of (C.40) is worth ζλ0

∆ at σc = 0 while the right-hand side

is Ṙ(0) D
2λ1

. Henceforth, there exists a solution σc to (C.40) when

(C.41)
ζλ0

∆
≥ Ṙ(0)D

2λ1
.

Notice that the right-hand side of (C.40) is an increasing function of σc while the left-hand side
is decreasing when

(C.42)
λ0∆

λ1
> Ṙ(0)ζ.

Under those conditions, there exists a unique solution to (C.40) that belongs to [0, ζ]. Next
proposition completes the description of such long-run behavior.
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Proposition C.4 The optimal action, stock and belief index admit the following approxima-
tions when t is large:

(C.43) xc(t;X) ∼+∞ σc,

(C.44) X̃c(t;X) ∼+∞ σcτ,

(C.45) Z̃c(t;X) ∼+∞
∆

∆− kσc
.

One important point is that the limiting behavior of the solution is independent of the initial
condition X. In other words, DM ’s incentives to modify the trajectory as time goes somewhat
vanish in the long run. The time-inconsistency problem is a problem in the short run only.

Proof of Proposition C.4: To look at the long-run behavior of the commitment solution,
we first change variables and define

Y (τ ;X) = 1− F (X̃c(τ ;X)) ∈ [0, 1] , R(Y (τ ;X)) = f(F−1(1− Y (τ ;X))),

ν̃(τ ;X) = ν(τ ;X)eλ0τ , µ̃(τ ;X) = µ(τ ;X)eλ0τ .

Using (C.9) and (C.10), we rewrite

(C.46) ˙̃µ(τ ;X) = λ0µ̃(τ ;X) + ∆R(Y (τ ;X))ν̃(τ ;X) ∀τ ≥ 0;

and

(C.47) ˙̃ν(τ ;X) = λ1

(
ν̃(τ ;X)− V∞ +

1

2λ1
(ζ − xc(τ ;X))2

)
.

Inserting into (C.13) yields

(C.48) xc(τ ;X) = ζ +
µ̃(τ ;X)

Z̃c(τ ;X)

where

(C.49)
˙̃
Zc(τ ;X) = ∆(Y (τ ;X)− Z̃c(τ ;X)).

We are looking for a solution which in the neighborhood of Y (τ ;X) = 0 (i.e. for τ → +∞) that
has a linear approximation with two parameters (z, σc) such that

(C.50) Z̃c(τ ;X) ∼τ→+∞ zY (τ ;X), x̃c(τ ;X) ∼τ→+∞ σc, ν̃(τ ;X) ∼τ→+∞ νc.

In the neighborhood of τ → +∞, (C.49) becomes

(C.51) z
˙̃
Y (τ ;X) = ∆(1− z)Y (τ ;X).

Differentiating Y (τ ;X) = 1− F (X̃c(τ ;X)) yields in that same neighborhood

(C.52) Ẏ (τ ;X) = −σcṘ(0)Y (τ ;X).
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Inserting into (6.7) yields

(C.53) z =
∆

∆− Ṙ(0)σc
> 0

where the right-hand side inequality follows from ∆ > Ṙ(0)ζ which is itself implied by the
second condition in (C.41).

Now, inserting (C.50) into (C.48) yields

(C.54) σc = ζ +
µ̃(τ ;X)

zY (τ ;X)
.

Inserting (C.54) into (C.46), we obtain

(C.55) (σc − ζ)zẎ (τ ;X) = λ0(σc − ζ)zY (τ ;X) + ∆Ṙ(0)Y (τ ;X)ν̃(τ ;X) ∀τ ≥ 0.

(C.56) −z(σc − ζ)σcṘ(0)Y (τ ;X) = λ0(σc − ζ)zY (τ ;X) + ∆Ṙ(0)Y (τ ;X)ν̃(τ ;X) ∀τ ≥ 0.

Inserting (C.54) into (C.47), we obtain in the neighborhood of τ → +∞

(C.57) ˙̃ν(τ ;X) = λ1

(
ν̃(τ ;X)− V∞ +

1

2λ1
(ζ − σc)2

)
.

The only bounded solution is such that

(C.58) ν̃(τ ;X) ∼τ→+∞ νc = V∞ −
1

2λ1
(ζ − σc)2.

Inserting into (C.56) and using (C.53) yields (C.40).
Q.E.D.

APPENDIX D: DEEP UNCERTAINTY, PSEUDO-VALUE FUNCTION AND STOCK-MARKOV
EQUILIBRIUM

For further reference, we now state the following Lemmatas.

Lemma D.1

(D.1)
∂X∗

∂X
(τ ;X) =

σ∗(X∗(τ ;X))

σ∗(X)
.

Proof of Lemma D.1: Starting with the definition of X∗(τ ;X) we get:

∂X∗

∂τ
(τ ;X) = σ∗(X∗(τ ;X))

and

∂X∗

∂τ
(τ ;X + dX) = σ∗(X∗(τ ;X + dX)).
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Taking dX small and using a first-order Taylor approximation, we get:

σ∗(X∗(τ ;X + dX)) = σ∗(X∗(τ ;X)) + σ̇∗(X∗(τ ;X))
∂X∗

∂X
(τ ;X)dX + o(dX)

where limdX→0 o(dX)/X = 0. Therefore, we get:

∂X∗

∂τ
(τ ;X + dX)− ∂X∗

∂τ
(τ ;X) = σ̇∗(X∗(τ ;X))

∂X∗

∂X
(τ ;X)dX + o(dX).

Using a first-order Taylor approximation of the left-hand side and simplifying, we get:

∂

∂τ

(
∂X∗

∂X
(τ ;X)

)
= σ̇∗(X∗(τ ;X))

∂X∗

∂X
(τ ;X).

Thus,

∂

∂τ
log

(
∂X∗

∂X
(τ ;X)

)
= σ̇∗(X∗(τ ;X)).

Integrating and taking into account that X∗(0;X) = X yields

(D.2)
∂X∗

∂X
(τ ;X) = exp

(∫ τ

0
σ̇∗(X∗(s;X))ds

)
.

Using the stationarity of the feedback rule and differentiating with respect to t yields

(D.3) σ̇∗(X∗(τ ;X)) =
∂2X∗

∂τ2
(τ ;X)

∂X∗

∂τ (τ ;X)
.

Inserting into (D.2) and integrating yields

∂X∗

∂X
(τ ;X) = exp

(
ln

(
∂X∗

∂τ (τ ;X)
∂X∗

∂τ (0;X)

))

and thus

∂X∗

∂X
(τ ;X) =

σ∗(X∗(τ ;X))

σ∗(X∗(0;X))
.

Noticing that X∗(0;X) = X yields (D.1). Q.E.D.

Lemma D.2

(D.4)
∂X̃

∂ε
(x, ε, τ ;X)|ε=0 = σ∗(X∗(τ ;X))

(
x

σ∗(X)
− 1

)
=

(
x

σ∗(X)
− 1

)
∂X̃

∂τ
(τ ;X).

Proof of Lemma D.2: Take τ > ε, we have

X̃(x, ε, τ ;X) = X + xε+

∫ τ

ε
σ∗(X̃(x, ε, s;X))ds

Now observe that, for s ≥ ε, we have

X̃(x, ε, s;X) = X∗(s− ε,X + xε).



56 L. GUILLOUET AND D. MARTIMORT

Hence, we rewrite

(D.5) X̃(x, ε, τ ;X) = X + xε+

∫ τ

ε
σ∗(X∗(s− ε,X + xε))ds.

Differentiating with respect to ε yields

(D.6)
∂X̃

∂ε
(x, ε, τ ;X)|ε=0 = x− σ∗(X) +

∫ τ

0
σ̇∗(X∗(s;X))

(
−∂X

∗

∂s
(s;X) + x

∂X∗

∂X
(s;X)

)
ds.

Inserting (D.1) into (D.6) yields

∂X̃

∂ε
(x, ε, τ ;X)|ε=0 = x− σ∗(X) +

(
x

σ∗(X)
− 1

)∫ τ

0
σ̇∗(X∗(s;X))

∂X∗

∂s
(s;X)ds.

Integrating the last term yields

(D.7)
∂X̃

∂ε
(x, ε, τ ;X)|ε=0 = x− σ∗(X) +

(
x

σ∗(X)
− 1

)
(σ∗(X∗(τ,X))− σ∗(X)) .

Simplifying further yields (D.4). Q.E.D.

Next Lemma provides a characterization of any continuously differentiable Stock-Markov Equi-
librium (V∗(X), σ∗(X))).

Lemma D.3 If the pseudo-value function V∗(X) is continuously differentiable, the following
necessary conditions hold at a Stock-Markov Equilibrium (V∗(X), σ∗(X)):

(D.8) 0 = max
x∈X

∂V
∂ε

(x, 0, X),

(D.9) σ∗(X) ∈ arg max
x∈X

∂V
∂ε

(x, 0, X).

Proof of Lemma D.3: If the pseudo-value function V∗(X) is continuously differentiable,
V(x, ε;X) is itself continuously differentiable in ε, and a first-order Taylor expansion in ε yields

(D.10) V(x, ε;X) = V∗(X) + ε
∂V
∂ε

(x, 0, X) + o(ε).

Hence, (7.8) amounts to (D.8). Conjectures being correct at equilibrium, (D.9) must also hold.
Q.E.D.

Proof of Proposition 9:

Lemma D.4 V∗(X) and ϕ(X) satisfy the following system of first-order differential equations:

(D.11) σ∗(X)V̇∗(X) = λ0V∗(X)− u(σ∗(X)) + ∆F (X)ϕ(X)

(D.12) σ∗(X)ϕ̇(X) = λ1(ϕ(X)− V∞) +
1

2
(V̇∗(X))2.
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Proof of Lemma D.4: Differentiating (7.3) with respect to X yields

V̇∗(X) =

∫ +∞

0
e−λ0τZ∗(τ ;X)u′(σ∗(X∗(τ ;X)))σ̇∗(X∗(τ ;X))

∂X∗

∂X
(τ ;X)dτ

+

∫ +∞

0
e−λ0τ

∂Z∗

∂X
(τ ;X)u(σ∗(X∗(τ ;X)))dτ.

Using (D.1), we rewrite this condition as

(D.13) σ∗(X)V̇∗(X) =

∫ +∞

0
e−λ0τZ∗(τ ;X)u′(σ∗(X∗(τ ;X)))σ̇∗(X∗(τ ;X))

∂X∗

∂τ
(τ ;X)dτ

+

∫ +∞

0
e−λ0τσ∗(X)

∂Z∗

∂X
(τ ;X)u(σ∗(X∗(τ ;X)))dτ.

Integrating by parts the first integral above, we find

(D.14) σ∗(X)V̇∗(X) =
[
e−λ0τZ∗(τ ;X)u(σ∗(X∗(τ ;X)))

]+∞

0

+λ0

∫ +∞

0
e−λ0τZ∗(τ ;X)u(σ∗(X∗(τ ;X)))dτ

+

∫ +∞

0
e−λ0τ

(
σ∗(X)

∂Z∗

∂X
(τ ;X)− ∂Z∗

∂τ
(τ ;X)

)
u(σ∗(X∗(τ ;X)))dτ.

Notice that

(D.15)
∂Z∗

∂τ
(τ ;X) = ∆(1− F (X∗(τ ;X))−Z∗(τ ;X)).

Observe also that

(D.16) σ∗(X)
∂Z∗

∂X
(τ ;X) = −∆e−∆τ

∫ τ

0
f(X∗(s;X))

∂X∗

∂s
(s;X)e∆sds.

Integrating by parts the right-hand side above yields

σ∗(X)
∂Z∗

∂X
(τ ;X) = −∆e−∆τ

(
F (X∗(τ ;X))e∆τ − F (X)−∆

∫ τ

0
F (X∗(s;X))e∆sds

)
.

Simplifying yields

(D.17) σ∗(X)
∂Z∗

∂X
(τ ;X) = ∆ (1− F (X∗(τ ;X))−Z∗(τ ;X)) + ∆e−∆τF (X).

and thus

(D.18) σ∗(X)
∂Z∗

∂X
(τ ;X)− ∂Z∗

∂τ
(τ ;X) = ∆e−∆τF (X).

Inserting (D.18) into (D.14) finally yields (D.11).

Using (7.12), we rewrite (7.11) as

(D.19) ϕ(X) = V∞ −
1

2

∫ +∞

0
e−λ1τ (V̇∗(X̃(τ ;X)))2dτ.

Differentiating (D.19) with respect to X yields

ϕ̇(X) = −
∫ +∞

0
e−λ1τ V̇∗(X∗(τ ;X))V̈∗(X∗(τ ;X))

∂X∗

∂X
(τ ;X)dτ.
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Using (D.1), we rewrite this condition as

(D.20) σ∗(X)ϕ̇(X) = −
∫ +∞

0
e−λ1τ V̇∗(X∗(τ ;X))V̈∗(X∗(τ ;X))

∂X∗

∂τ
(τ ;X)dτ.

Integrating by parts we obtain∫ +∞

0
e−λ1τ V̇∗(X∗(τ ;X))V̈∗(X∗(τ ;X))

∂X∗

∂τ
(τ ;X)dτ =

[
1

2
e−λ1τ (V̇∗(X∗(τ ;X)))2

]+∞

0

−λ1(ϕ(X)−V∞).

Inserting into (D.20) and taking into account (7.12), we finally obtain (D.12). Finally, taking
into account (7.12) and inserting into (D.12) yields (7.13). Q.E.D.

Observe that

(D.21) V(x, ε;X) =

∫ ε

0
e−λ0τ

(
1−∆e−∆τ

∫ τ

0
F (X + xs)e∆sds

)
u(x)dτ

+

∫ +∞

ε
e−λ0τ

(
1−∆e−∆τ

∫ τ

0
F (X̃(x, ε, τ ;X))e∆sds

)
u(σ∗(X̃(x, ε, τ ;X)))dτ.

From that, we deduce

(D.22)
∂V
∂ε

(0, x,X) = u(x)− u(σ∗(X))

+

∫ +∞

0
e−λ0τZ∗(τ ;X)u′(σ∗(X∗(τ ;X)))σ̇∗(X∗(τ ;X))

∂X̃

∂ε
(x, ε, τ ;X)|ε=0dτ

+

∫ +∞

0
e−λ0τ

(
−∆e−∆τ

∫ τ

0
f(X∗(s;X))

∂X̃

∂ε
(x, ε, s;X)|ε=0e

∆sds

)
u(σ∗(X∗(τ ;X)))dτ.

Using (D.4), this expression can be simplified as

(D.23)
∂V
∂ε

(0, x,X) = u(x)− u(σ∗(X))

+

(
x

σ∗(X)
− 1

)(∫ +∞

0
e−λ0τZ∗(τ ;X)u′(σ∗(X∗(τ ;X)))σ̇∗(X∗(τ ;X))

∂X∗

∂τ
(τ ;X)dτ

+

∫ +∞

0
e−λ0τ

(
−∆e−∆τ

∫ τ

0
f(X∗(s;X))

∂X∗

∂τ
(s;X)e∆sds

)
u(σ∗(X∗(τ ;X)))dτ

)
.

Using (D.16) and (D.17), we rewrite

(D.24)

∫ +∞

0
e−λ0τ

(
−∆e−∆τ

∫ τ

0
f(X∗(s;X))

∂X∗

∂τ
(s;X)e∆sds

)
u(σ∗(X∗(τ ;X)))dτ

=

∫ +∞

0
e−λ0τσ∗(X)

∂Z∗

∂X
(τ ;X)u(σ∗(X∗(τ ;X)))dτ.

Integrating by parts, we also have

(D.25)

∫ +∞

0
e−λ0τZ∗(τ ;X)u′(σ∗(X∗(τ ;X)))σ̇∗(X∗(τ ;X))

∂X∗

∂τ
(τ ;X)dτ
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=
[
e−λ0τZ∗(τ ;X)u(σ∗(X∗(τ ;X)))

]+∞

0
+

∫ +∞

0

(
λ0Z∗(τ ;X)− ∂Z∗

∂τ
(τ ;X)

)
e−λ0τu(σ∗(X∗(τ ;X)))dτ.

= λ0V∗(X)− u(σ∗(X))−
∫ +∞

0
e−λ0τ

∂Z∗

∂τ
(τ ;X)u(σ∗(X∗(τ ;X)))dτ.

Using (D.24) and (D.25) and inserting into (D.23) yields

∂V
∂ε

(0, x,X) = u(x)− u(σ∗(X))

+

(
x

σ∗(X)
− 1

)(
λ0V∗(X)−u(σ∗(X))−

∫ +∞

0
e−λ0τ

(
σ∗(X)

∂Z∗

∂X
(τ ;X)− ∂Z∗

∂τ
(τ ;X)

)
u(σ∗(X∗(τ ;X)))dτ

)
.

Using (D.11), (D.18) and simplifying yields

(D.26)
∂V
∂ε

(0, x,X) = u(x)− u(σ∗(X)) + (x− σ∗(X)) V̇∗(X).

Because ∂V
∂ε (0, x,X) so obtained is strictly concave in x, the following first-order condition is

necessary and sufficient for an interior optimum obtained from (D.8) and (D.9):

0 =
∂2V
∂ε∂x

(0, σ∗(X), X)

which writes as (7.12).

Inserting this expression of σ∗(X) into (D.11), we now obtain

(D.27) λ0V∗(X)− λ1V∞ + ∆F (X)ϕ(X) = ζV̇∗(X) +
(V̇∗(X))2

2
.

Therefore, V̇∗(X) is implicitly defined through this second-degree equation. This equation has
real solutions provided that the trajectory remains in the domain defined as

(D.28) λ0V∗(X)−D + ∆F (X)ϕ(X) ≥ 0 ∀X.

We will indeed check (see the Proof of Proposition 10 below) that (D.28) always holds along the
equilibrium trajectory. Taking then the highest root to (D.27) yields (7.9). As a consequence
of (D.33) below, the equilibrium feedback rule (7.12) then ensures that actions always remain
within (0, ζ) ⊂ X . The lowest root would instead induce negative actions.

To get the limiting behavior (7.10), we prove the following Lemma.

Lemma D.5 V∗(X) is non-increasing and satisfies (7.10). ϕ(X) satisfies

(D.29) lim
X→+∞

ϕ(X) = V∞.

Proof of Lemma D.5: From (D.19), ϕ(X) ≤ V∞. Thus, we get

V̇∗(X) ≤ ζ

(
−1 +

√
1 + 2

λ0

ζ2
(V∗(X)− V∞)− 2

∆V∞
ζ2

(1− F (X))

)
.

Using the fact that
√

1 + 2Y ≤ 1 + Y yields

(D.30) V̇∗(X) ≤ −∆V∞
ζ

(1− F (X)) +
λ0

ζ
(V∗(X)− V∞) .
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Because X̃(s;X) ≥ X and u(σ∗(X̃(τ ;X))) ≤ λ1V∞, we then obtain

(D.31)

V∗(X) ≤ λ1V∞
∫ +∞

0
e−λ0τ

(
1− e−∆τF (X)

(
e∆τ − 1

))
dτ = V∞

(
F (X) +

λ1

λ0
(1− F (X))

)
∀X

and thus

(D.32) V∗(X)− V∞ ≤
∆V∞
λ0

(1− F (X)) ∀X.

Inserting into (D.30) and simplifying, yields

(D.33) V̇∗(X) ≤ 0 ∀X.

Because V∗(X) ≥ 0, V∗(X) that is non-increasing thus converges when X → +∞. Let l be this
limit. From (D.31), it follows that

(D.34) l ≤ V∞.

Applying Gronwall’s Lemma to (D.30) also yields

(V∗(X)− V∞)e
−λ0

ζ
X ≥ ∆V∞

ζ

∫ +∞

X
(1− F (X̃))e

−λ0
ζ
X̃
dX̃.

Thus

(D.35) V∗(X) ≥ V∞ +
∆V∞
ζ

e
λ0
ζ
X
∫ +∞

X
(1− F (X̃))e

−λ0
ζ
X̃
dX̃.

In particular, we have

(D.36) V∗(X) ≥ V∞.

Taking limits, we also get

(D.37) l ≥ V∞.

Taking together (D.34) and (D.37) yields (7.10). Therefore, we must necessarily have

(D.38) lim
X→+∞

σ∗(X) = ζ.

It follows from (7.12) that

(D.39) lim
X→+∞

V̇∗(X) = 0.

Inserting (D.38) and (D.39) into (D.11) finally yields (D.29). Q.E.D.

Q.E.D.

Proof of Proposition 10: We first observe that with F having finite support
[
0, X

]
, the

solution to the system of first-order differential equations (D.11)-(D.12) together with the feed-
back rule (7.12) trivially entails

σ∗(X) = ζ ∀X ≥ X
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and thus

V∗(X) = ϕ(X) = V∞ ∀X ≥ X.

The system (7.12)-(D.11)-(D.12) rewrite as (7.9)-(7.13) together with the boundary conditions

(D.40) V∗(X) = ϕ(X) = V∞.

First, we prove that

(D.41) ϕ(X) ≥ 0 ∀X ≤ X.

By definition (7.11), a sufficient condition is to have

(D.42)
1

2
(V̇∗(X))2 ≤ λ1V∞ = D +

ζ2

2
∀X ≤ X.

But from (7.9) and (D.33), we get

(D.43) 0 ≤ −V̇∗(X)) ≤ ζ ∀X ≤ X

and (D.42) holds.

Second, using (D.36) and (D.41), we finally get the lower bound

(D.44) λ0V∗(X)−D + ∆F (X)ϕ(X) ≥ λ0V∞ −D ≥ 0

where the last inequality follows from Footnote 28.

We now transform the system of first-order differential equations (7.9)-(7.13) in backwards
form by defining Ṽ∗(Y ) = V∗(X), ϕ̃(Y ) = ϕ(X) and Y = X −X ∈

[
0, X

]
respectively as

(D.45) ˙̃V∗(Y ) = f1(Y, Ṽ∗(Y ), ϕ̃(Y )) ≡ ζ −
√

2λ0Ṽ∗(Y )− 2D + 2∆F (X − Y )ϕ̃(Y )

and

(D.46) ˙̃ϕ(Y ) = f2(Y, Ṽ∗(Y ), ϕ̃(Y )) ≡ −
λ1(ϕ̃(Y )− V∞) + 1

2( ˙̃V∗(Y ))2

− ˙̃V∗(Y ) + ζ
.

The boundary conditions (D.40) now become

(D.47) Ṽ∗(0) = ϕ̃(0) = V∞.

By Cauchy-Lipschitz Theorem, there is a unique solution to the system of first-order differential
equations (D.45)-(D.46) with the initial conditions (D.47). This theorem only provides existence
on an interval of finite length. That this solution can be extended for all X ∈

[
0, X

]
follows

from using Wintner Theorem (Wintner, 1946; Nemytskii and Stepanov, 1989 p.11) that provides
sufficient conditions for the existence of a global solution valid on

[
0, X

]
for any arbitrary X.

Theorem D.1 Wintner (1946). Suppose that there exists a continuous function L(r) > 0
defined for r ≥ r0, satisfying

(D.48) |fi(Y, Ṽ∗(Y ), ϕ̃(Y ))| < L(r), i = 1, 2.

and having the property∫ +∞

r0

dr

L(r)
= +∞.

where r = ‖(Ṽ∗(Y ), ϕ̃(Y ))‖ ≡
√
Ṽ∗2(Y ) + ϕ̃2(Y ). Then, there is a unique solution to the system

of first-order differential equations (D.45)-(D.46) with the initial conditions (D.47) over
[
0, X

]
for any arbitrary X.
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To apply Wintner Theorem, it is enough to prove that there exist constants ci and di such
that the following uniform growth conditions hold:

(D.49) |fi(Y, Ṽ∗(Y ), ϕ̃(Y )| ≤ ci‖(Ṽ∗(Y ), ϕ̃(Y ))‖+ di, i = 1, 2.

Then, taking L(r) = max{c1, c2}r + max{d1, d2} does the job.

First, we notice that

|f1(Y, Ṽ∗(Y ), ϕ̃(Y ))| = |ζ −
√
ζ2 + 2λ0(Ṽ∗(Y )− V∞) + 2∆(ϕ̃(Y )− V∞)|

and thus, using the triangular inequality,

|f1(Y, Ṽ∗(Y ), ϕ̃(Y ))| ≤ |ζ|+
∣∣∣∣√ζ2 + 2λ0(Ṽ∗(Y )− V∞) + 2∆(ϕ̃(Y )− V∞)

∣∣∣∣ .
Using now the fact that

√
1 + 2Y ≤ 1 + Y , we obtain

|f1(Y, Ṽ∗(Y ), ϕ̃(Y ))| ≤ ζ + ζ

∣∣∣∣1 +
λ0

ζ2
(Ṽ∗(Y )− V∞) +

∆

ζ2
(ϕ̃(Y )− V∞)

∣∣∣∣
and thus, using the triangular inequality,

(D.50) |f1(Y, Ṽ∗(Y ), ϕ̃(Y ))| ≤ ζ
(

2 +
λ0

ζ2
(|Ṽ∗(Y )|+ V∞) +

∆

ζ2
(|ϕ̃(Y )|+ V∞)

)
Observing that |x|+ |y| ≤

√
2
√
|x|2 + |y|2 (D.50) implies (D.49) for some constants

c1 =
√

2 max

{
λ0

ζ
;
∆

ζ

}
; d1 =

√
2

(
2ζ +

λ1

ζ
V∞
)
.

Using (D.36) and taking the backward expression of variables yields

Ṽ∗(Y ) ≥ V∞ ∀Y ∈
[
0, X

]
.

From this and the fact that ϕ̃(Y ) ≥ 0 (from the definition (7.11)), observe that

(D.51) − ˙̃V∗(Y ) + ζ =

√
ζ2 + 2λ0(Ṽ∗(Y )− V∞) + 2∆(ϕ̃(Y )− V∞) ≥

√
2λ0V∞ − 2D > 0

where the last inequality follows from (D.44).

Using the triangular inequality, we now have

|f2(Y, Ṽ∗(Y ), ϕ̃(Y ))| ≤ λ1√
ζ2 + 2λ0(Ṽ∗(Y )− V∞) + 2∆(ϕ̃(Y )− V∞)

|ϕ̃(Y )−V∞|+

∣∣∣∣∣( ˙̃V∗(Y )− ζ + ζ)2

2(− ˙̃V∗(Y ) + ζ)

∣∣∣∣∣ .
Using (D.51) to provide an upper bound of the first term on the right-hand side yields

|f2(Y, Ṽ∗(Y ), ϕ̃(Y ))| ≤ λ1√
2λ0V∞ − 2D

|ϕ̃(Y )− V∞|+

∣∣∣∣∣( ˙̃V∗(Y )− ζ + ζ)2

2(− ˙̃V∗(Y ) + ζ)

∣∣∣∣∣ .
Developing the second term on the right-hand side, we obtain

|f2(Y, Ṽ∗(Y ), ϕ̃(Y ))| ≤ λ1√
2λ0V∞ − 2D

|ϕ̃(Y )−V∞|+

∣∣∣∣∣ ζ2

2(− ˙̃V∗(Y ) + ζ)
− ζ +

− ˙̃V∗(Y ) + ζ

2

∣∣∣∣∣ .
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Using again the triangular inequality and (D.51) to provide an upper bound of the second term
on the right-hand side yields

|f2(Y, Ṽ∗(Y ), ϕ̃(Y ))| ≤ λ1√
2λ0V∞ − 2D

|ϕ̃(Y )− V∞|+
ζ2

2
√

2λ0V∞ − 2D
+ ζ

+
1

2

√
ζ2 + 2λ0(Ṽ∗(Y )− V∞) + 2∆(ϕ̃(Y )− V∞).

Again using the fact that
√

1 + 2Y ≤ 1 + Y and the triangular inequality repeatedly, we now
obtain

|f2(Y, Ṽ∗(Y ), ϕ̃(Y ))| ≤ λ1√
2λ0V∞ − 2D

(|ϕ̃(Y )|+ V∞) +
ζ2

2
√

2λ0V∞ − 2D
+

3ζ

2

+
λ0

2ζ
(|Ṽ∗(Y )|+ V∞) +

∆

2ζ
(|ϕ̃(Y )|+ V∞)

and thus, proceeding as above,

(D.52) |f2(Y, Ṽ∗(Y ), ϕ̃(Y ))| ≤ c2‖Ṽ∗(Y ), ϕ̃(Y ))‖+ d2

for some constants

c2 =
√

2 max

{
λ0

2ζ
;

λ1√
2λ0V∞ − 2D

+
∆

2ζ

}
; d2 =

√
2

((
λ1√

2λ0V∞ − 2D
+
λ1

2ζ

)
V∞ +

ζ2

2
√

2λ0V∞ − 2D
+

3ζ

2

)
.

This ends the proof of global existence of a backward solution. By flipping variables, this proce-
dure allows us to reconstruct the forward solution (V∗(X), ϕ(X)) over

[
0, X

]
. Q.E.D.

Proof of Proposition 11: We now come back on the system of first-order differential equa-
tions (7.9)-(7.13) together with the boundary conditions (7.10)-(D.29). Consider the new vari-
ables

Y = 1−F (X) ∈ [0, 1] ,V∗(X)−V∞ = U(Y ), ϕ(X)−V∞ = ψ(Y ) and R(Y ) = f(F−1(1−Y )).

We rewrite (7.9)-(7.13) respectively as

(D.53) U̇(Y ) =
1

R(Y )

(
ζ −

√
ζ2 + 2λ0U(Y )− 2∆V∞ + 2∆(1− Y )V∞ + 2∆(1− Y )ψ(Y )

)

(D.54) ψ̇(Y ) =
−λ1ψ(Y )− 1

2(U̇(Y ))2R2(Y )

R(Y )
(
ζ − U̇(Y )R(Y )

)
while the boundary conditions (7.10)-(D.29) become

(D.55) U(0) = ψ(0) = 0.

To analyze the local behavior of this solution in the neighborhood of Y = 0, we transform this
system as an autonomous system by introducing a new time scale z and express U , ϕ and Y as
functions of z (these functions being now denoted with a tilda) so that:

(D.56) ˙̃U(z) = −ζ +

√
ζ2 + 2λ0Ũ(z)− 2∆V∞Ỹ (z) + 2∆(1− Ỹ (z))ψ̃(z)
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(D.57)
˙̃
ψ(z) =

λ1ψ̃(z) + 1
2

˙̃U2(z)

ζ + ˙̃U(z)

(D.58) ˙̃Y (z) = −R(Ỹ (z))

with the boundary conditions

(D.59) lim
z→+∞

ψ̃(z) = lim
z→+∞

Ũ(z) = lim
z→+∞

Ỹ (z) = 0.

We now linearize this system around its long-run equilibrium (0, 0, 0) to get:

(D.60) ˙̃U(z) =
λ0

ζ
Ũ(z) +

∆

ζ
ψ̃(z)− ∆V∞

ζ
Ỹ (z)

(D.61)
˙̃
ψ(z) =

λ1

ζ
ψ̃(z)

(D.62) ˙̃Y (z) = −R′(0)Ỹ (z).

The properties of the linear system above are thus determined by those of the following matrix

A =

λ0
ζ

∆
ζ −∆V∞

ζ

0 λ1
ζ 0

0 0 −R′(0)


A has two positive eigenvalues and one negative one. The system is hyperbolic and its equilib-
rium (0, 0, 0) is thus a saddle. The plane (Ũ , ψ̃) is unstable while the axis Y is stable.

From the Hartman-Grobman Theorem (Perko, 1991, Section 2.8), the nonlinear system (D.56)-
(D.57)-(D.58) and the linear system (D.60)-(D.61)-(D.62) are topologically equivalent. More
formally, let φz be the flow for the nonlinear system (D.56)-(D.57)-(D.58). Because A has non-
zero eigenvalues, there exists a homeomorphism H on an open neighborhood U of (0, 0, 0), such
that for each (Ũ0, ψ̃0, Y0) ∈ U there is an open interval I0 ⊂ R containing zero such that for all
(Ũ0, ψ̃0, Y0) ∈ U and z0 ∈ I0, H(φz(Ũ0, ψ̃0, Y0)) = eAzH(Ũ0, ψ̃0, Y0).

From this homeomorphism, it follows that the stable manifold for the nonlinear system (D.56)-
(D.57)-(D.58) is also one-dimensional. This means that there is an onto relationship between
Ũ and Y on that manifold. Henceforth, the solution U(Y ) is also unique and thus the value
function V∗(X) is also unique. This ends the proof of uniqueness of the equilibrium.

Approximations.To give an approximation of the solution. Observe that the linear system
(D.60)-(D.61)-(D.62) can be solved recursively by noticing first that

(D.63) Ỹ (z) = Ỹ0e
−R′(0)z

for some arbitrary Ỹ0 since all such solutions satisfy (D.59). From (D.61), we also have

(D.64) ψ̃(z) = ψ̃0e
λ1
ζ
z
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but the only solution consistent with (D.59) has ψ̃0 = 0. Finally inserting those findings into
(D.60), we get

(D.65) ˙̃U(z) =
λ0

ζ
Ũ(z)− ∆V∞Ỹ0

ζ
e−R

′(0)z

Integrating yields

(D.66) Ũ(z) = e
λ0
ζ
z

(
Ũ0 −

∆V∞Ỹ0

ζ

∫ z

0
e
−
(
R′(0)+

λ0
ζ

)
z̃
dz̃

)
.

The only solution consistent with (D.59) has thus

(D.67) Ũ0 =
∆V∞Ỹ0

ζR′(0) + λ0

which gives us a first-order approximation for the stable manifold. Expressed in terms of our
original variable, we find that the one-dimensional stable manifold can be approximated as
(7.15) when X → +∞. Q.E.D.

Proof of Proposition 12: Condition (D.35) (resp. (D.32)) immediately yields the left-
hand side (resp. the right-hand side) of (7.17). Inserting (D.33) into (7.12) yields the right-hand
side of (7.18). Observe now that (7.12) and (7.9) imply

σ∗(X) =
√
ζ2 − 2∆V∞ + 2λ0(V∗(X)− V∞) + 2∆F (X)ϕ(X) ≥

√
ζ2 − 2∆V∞

where the inequality follows from the left-hand side of (7.17). From this, we immediately get
the left-hand side of (7.18). Q.E.D.

APPENDIX E: THE RELEVANCE OF THE PRECAUTIONARY PRINCIPLE

Proof of Proposition 13: Differentiating (8.2) with respect to ε, for τ ≥ ε, yields

∂X̃

∂ε
(x, ε, τ ; 0) = x−σ∗(xε)+

∫ τ

ε
σ̇∗(X∗(s−ε;xε))

(
−∂X

∗

∂s
(s− ε;xε) + x

∂X∗

∂X
(s− ε;xε)

)
ds.

or using (D.1)

∂X̃

∂ε
(x, ε, τ ; 0) = x− σ∗(xε) +

(
x

σ∗(xε)
− 1

)∫ τ

ε
σ̇∗(X∗(s− ε;xε))σ∗(X∗(s− ε;xε)))ds

= x− σ∗(xε) +

(
x

σ∗(xε)
− 1

)∫ τ

ε
σ̇∗(X∗(s− ε;xε))∂X

∗

∂s
(s− ε;xε)ds

= x− σ∗(xε) +

(
x

σ∗(xε)
− 1

)
(σ∗(X∗(τ − ε;xε))− σ∗(xε))

and thus

(E.1)
∂X̃

∂ε
(x, ε, τ ; 0) =

{
0 for τ < ε,(

x
σ∗(xε) − 1

)
σ∗(X∗(τ − ε;xε)) for τ ≥ ε.
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From (7.6), we get

(E.2) Z(x, ε, τ ; 0) = 1−∆e−∆τ

∫ τ

0
F (X̃(x, ε, s; 0))e∆sds.

Differentiating (E.2) with respect to ε yields

∂Z
∂ε

(x, ε, τ ; 0) = −∆e−∆τ

∫ τ

0
f(X̃(x, ε, s; 0))

∂X̃

∂ε
(x, ε, s; 0)e∆sds

and using (E.1) for τ ≥ ε,

(E.3)

∂Z
∂ε

(x, ε, τ ; 0) =

{
0 for τ < ε,

−
(

x
σ∗(xε) − 1

)
∆e−∆τ

∫ τ
0 f(X̃(x, ε, s; 0))σ∗(X∗(s− ε;xε))e∆sds for τ ≥ ε.

Differentiating now (8.1) with respect to ε, we find

∂V
∂ε

(x, ε; 0) = e−λ0εZ(ε, ε; 0)(u(x)− u(σ∗(xε)))

+

∫ +∞

ε
e−λ0τZ(x, ε, τ ; 0)u′(σ∗(X̃(ε, τ ;xε)))σ̇∗(X̃(ε, τ ;xε))

∂X̃

∂ε
(x, ε, τ ; 0)dτ

+

∫ +∞

ε
e−λ0τ

∂Z
∂ε

(x, ε, τ ; 0)u(σ∗(X̃(ε, τ ;xε)))dτ.

Using (E.1) and (E.3) into the first and second integrals above immediately yields

∂V
∂ε

(ε, x, 0) = 0

when (8.3) holds.

Let denote the solution x∗(ε) so implicitly defined. Because σ∗(0) > 0 and σ∗(X) < ζ for all
X, there exists always such a solution x∗(ε) > 0 for any ε > 0. Moreover, the Implicit Function

Theorem implies ẋ∗(ε) = x∗(ε)σ̇∗(x∗(ε))
1−εσ̇∗(x∗(ε)) . In particular, we get

(E.4) x(0) = σ∗(0) and ẋ(0) = σ∗(0)σ̇∗(0).

Differentiating (8.2) with respect to x, for τ ≥ ε, yields

∂X̃

∂x
(x, ε, τ ; 0) = ε

(
1 +

∫ τ

ε
σ̇∗(X∗(s− ε;xε))∂X

∗

∂X
(s− ε;xε)ds

)
.

or using (D.1)

∂X̃

∂x
(x, ε, τ ; 0) = ε

(
1 +

1

σ∗(xε)

∫ τ

ε
σ̇∗(X∗(s− ε;xε))σ∗(X∗(s− ε;xε)))ds

)

= ε

(
1 +

1

σ∗(xε)

∫ τ

ε
σ̇∗(X∗(s− ε;xε))∂X

∗

∂s
(s− ε;xε)ds

)
and thus

(E.5)
∂X̃

∂x
(x, ε, τ ; 0) =

{
τ for τ ≤ ε,
εσ
∗(X∗(τ−ε;xε))

σ∗(xε) for τ ≥ ε.
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Observe in particular that we get the following first-order Taylor expansion in ε in the neigh-
borhood of ε = 0,

(E.6)
∂X̃

∂x
(x, ε, τ ; 0) = ε

σ∗(X∗(τ ; 0))

σ∗(0)
.

Differentiating (E.2) with respect to x yields

∂Z
∂x

(x, ε, τ ; 0) = −∆e−∆τ

∫ τ

0
f(X̃(x, ε, s; 0))

∂X̃

∂x
(x, ε, s; 0)e∆sds

and using (E.5)

(E.7)
∂Z
∂x

(x, ε, τ ; 0) =

{
−∆e−∆τ

∫ τ
0 f(sx)se∆sds for τ ≤ ε,

− ε
σ∗(xε)∆e−∆τ

∫ τ
0 f(X̃(x, ε, s; 0))σ∗(X∗(s− ε;xε))e∆sds for τ ≥ ε.

From that, we get the following first-order Taylor expansion in ε in the neighborhood of ε = 0,

(E.8)
∂Z
∂x

(x, ε, τ ; 0) = − ε

σ∗(0)
∆e−∆τ

∫ τ

0
f(X∗(s; 0))σ∗(X∗(s; 0))e∆sds.

Now observe that

(E.9)
∂Z∗

∂τ
(τ ; 0) = −∆F (X∗(τ ; 0)) + ∆2e−∆τ

∫ τ

0
F (X∗(s; 0))e∆sds.

Integrating by parts, we also get

(E.10)

−∆e−∆τ

∫ τ

0
f(X∗(s; 0))

∂X∗

∂τ
(s; 0)e∆sds = −∆F (X∗(τ ; 0))+∆2e−∆τ

∫ τ

0
F (X∗(s; 0))e∆sds.

Inserting into (E.8) and (E.9) finally yields the following first-order Taylor expansion in ε in the
neighborhood of ε = 0,

(E.11)
∂Z
∂x

(x, ε, τ ; 0) =
ε

σ∗(0)

∂Z∗

∂τ
(τ ; 0).

Differentiating now (8.1) with respect to x, we find

(E.12)
∂V
∂x

(x, ε; 0) =

∫ +∞

0
e−λ0τZ(x, ε, τ ; 0)u′(σ∗(X̃(ε, τ ;xε)))σ̇∗(X̃(ε, τ ;xε))

∂X̃

∂x
(x, ε, τ ; 0)dτ

+

∫ +∞

0
e−λ0τ

∂Z
∂x

(x, ε, τ ; 0)u(σ∗(X̃(ε, τ ;xε)))dτ.

Let us now denote ω(ε) = V(x∗(ε), ε; 0). By the Envelope Theorem, we get

ω̇(ε) =
∂V
∂x

(x∗(ε), ε; 0)ẋ∗(ε).

Using (E.6), (E.11) and (E.12), we compute the following first-order Taylor expansion

(E.13)
∂V
∂x

(σ∗(0), ε; 0) = ε
ẋ(0)

σ∗(0)

(∫ +∞

0
e−λ0τZ∗(τ ; 0)u′(σ∗(X∗(τ ; 0))σ̇∗(X∗(τ ; 0)))

∂X∗

∂τ
(τ ; 0)dτ
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+

∫ +∞

0
e−λ0τ

∂Z∗

∂τ
(τ ; 0)u(σ∗(X∗(τ ; 0)))dτ

)
.

Integrating by parts, we get

(E.14)

∫ +∞

0
e−λ0τZ∗(τ ; 0)u′(σ∗(X∗(τ ; 0))σ̇∗(X∗(τ ; 0))

∂X∗

∂τ
(τ ; 0)dτ = −u(σ∗(0))

−
∫ +∞

0
e−λ0τ

(
∂Z∗

∂τ
(τ ; 0)− λ0Z∗(τ ; 0)

)
u(σ∗(X∗(τ ; 0))dτ.

Inserting within (E.13) and simplifying yields the following first-order Taylor expansion in ε

(E.15)
∂V
∂x

(σ∗(0), ε; 0) = ε
ẋ(0)

σ∗(0)

(
− u(σ∗(0)) + λ0V∗(0)

)
.

Using (D.11) and (E.4) yields the following first-order Taylor expansion in ε

∂V
∂x

(σ∗(0), ε; 0) = εσ∗(0)σ̇∗(0)V̇∗(0).

Because V̇∗(0) < 0, ∂V∂x (σ∗(0), ε; 0) > 0 in a right-neighborhood of ε = 0 if and only if σ̇∗(0) < 0.
Q.E.D.


